Mercurial > dropbear
comparison libtommath/bn_mp_n_root.c @ 293:9d110777f345 contrib-blacklist
propagate from branch 'au.asn.ucc.matt.dropbear' (head 7ad1775ed65e75dbece27fe6b65bf1a234db386a)
to branch 'au.asn.ucc.matt.dropbear.contrib.blacklist' (head 1d86a4f0a401cc68c2670d821a2f6366c37af143)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 10 Mar 2006 06:31:29 +0000 |
parents | eed26cff980b |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
247:c07de41b53d7 | 293:9d110777f345 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_N_ROOT_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* find the n'th root of an integer | |
19 * | |
20 * Result found such that (c)**b <= a and (c+1)**b > a | |
21 * | |
22 * This algorithm uses Newton's approximation | |
23 * x[i+1] = x[i] - f(x[i])/f'(x[i]) | |
24 * which will find the root in log(N) time where | |
25 * each step involves a fair bit. This is not meant to | |
26 * find huge roots [square and cube, etc]. | |
27 */ | |
28 int mp_n_root (mp_int * a, mp_digit b, mp_int * c) | |
29 { | |
30 mp_int t1, t2, t3; | |
31 int res, neg; | |
32 | |
33 /* input must be positive if b is even */ | |
34 if ((b & 1) == 0 && a->sign == MP_NEG) { | |
35 return MP_VAL; | |
36 } | |
37 | |
38 if ((res = mp_init (&t1)) != MP_OKAY) { | |
39 return res; | |
40 } | |
41 | |
42 if ((res = mp_init (&t2)) != MP_OKAY) { | |
43 goto LBL_T1; | |
44 } | |
45 | |
46 if ((res = mp_init (&t3)) != MP_OKAY) { | |
47 goto LBL_T2; | |
48 } | |
49 | |
50 /* if a is negative fudge the sign but keep track */ | |
51 neg = a->sign; | |
52 a->sign = MP_ZPOS; | |
53 | |
54 /* t2 = 2 */ | |
55 mp_set (&t2, 2); | |
56 | |
57 do { | |
58 /* t1 = t2 */ | |
59 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { | |
60 goto LBL_T3; | |
61 } | |
62 | |
63 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ | |
64 | |
65 /* t3 = t1**(b-1) */ | |
66 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { | |
67 goto LBL_T3; | |
68 } | |
69 | |
70 /* numerator */ | |
71 /* t2 = t1**b */ | |
72 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { | |
73 goto LBL_T3; | |
74 } | |
75 | |
76 /* t2 = t1**b - a */ | |
77 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { | |
78 goto LBL_T3; | |
79 } | |
80 | |
81 /* denominator */ | |
82 /* t3 = t1**(b-1) * b */ | |
83 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { | |
84 goto LBL_T3; | |
85 } | |
86 | |
87 /* t3 = (t1**b - a)/(b * t1**(b-1)) */ | |
88 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { | |
89 goto LBL_T3; | |
90 } | |
91 | |
92 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { | |
93 goto LBL_T3; | |
94 } | |
95 } while (mp_cmp (&t1, &t2) != MP_EQ); | |
96 | |
97 /* result can be off by a few so check */ | |
98 for (;;) { | |
99 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { | |
100 goto LBL_T3; | |
101 } | |
102 | |
103 if (mp_cmp (&t2, a) == MP_GT) { | |
104 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { | |
105 goto LBL_T3; | |
106 } | |
107 } else { | |
108 break; | |
109 } | |
110 } | |
111 | |
112 /* reset the sign of a first */ | |
113 a->sign = neg; | |
114 | |
115 /* set the result */ | |
116 mp_exch (&t1, c); | |
117 | |
118 /* set the sign of the result */ | |
119 c->sign = neg; | |
120 | |
121 res = MP_OKAY; | |
122 | |
123 LBL_T3:mp_clear (&t3); | |
124 LBL_T2:mp_clear (&t2); | |
125 LBL_T1:mp_clear (&t1); | |
126 return res; | |
127 } | |
128 #endif |