Mercurial > dropbear
comparison libtommath/bn_mp_prime_is_prime.c @ 293:9d110777f345 contrib-blacklist
propagate from branch 'au.asn.ucc.matt.dropbear' (head 7ad1775ed65e75dbece27fe6b65bf1a234db386a)
to branch 'au.asn.ucc.matt.dropbear.contrib.blacklist' (head 1d86a4f0a401cc68c2670d821a2f6366c37af143)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 10 Mar 2006 06:31:29 +0000 |
parents | eed26cff980b |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
247:c07de41b53d7 | 293:9d110777f345 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_PRIME_IS_PRIME_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* performs a variable number of rounds of Miller-Rabin | |
19 * | |
20 * Probability of error after t rounds is no more than | |
21 | |
22 * | |
23 * Sets result to 1 if probably prime, 0 otherwise | |
24 */ | |
25 int mp_prime_is_prime (mp_int * a, int t, int *result) | |
26 { | |
27 mp_int b; | |
28 int ix, err, res; | |
29 | |
30 /* default to no */ | |
31 *result = MP_NO; | |
32 | |
33 /* valid value of t? */ | |
34 if (t <= 0 || t > PRIME_SIZE) { | |
35 return MP_VAL; | |
36 } | |
37 | |
38 /* is the input equal to one of the primes in the table? */ | |
39 for (ix = 0; ix < PRIME_SIZE; ix++) { | |
40 if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { | |
41 *result = 1; | |
42 return MP_OKAY; | |
43 } | |
44 } | |
45 | |
46 /* first perform trial division */ | |
47 if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { | |
48 return err; | |
49 } | |
50 | |
51 /* return if it was trivially divisible */ | |
52 if (res == MP_YES) { | |
53 return MP_OKAY; | |
54 } | |
55 | |
56 /* now perform the miller-rabin rounds */ | |
57 if ((err = mp_init (&b)) != MP_OKAY) { | |
58 return err; | |
59 } | |
60 | |
61 for (ix = 0; ix < t; ix++) { | |
62 /* set the prime */ | |
63 mp_set (&b, ltm_prime_tab[ix]); | |
64 | |
65 if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { | |
66 goto LBL_B; | |
67 } | |
68 | |
69 if (res == MP_NO) { | |
70 goto LBL_B; | |
71 } | |
72 } | |
73 | |
74 /* passed the test */ | |
75 *result = MP_YES; | |
76 LBL_B:mp_clear (&b); | |
77 return err; | |
78 } | |
79 #endif |