Mercurial > dropbear
comparison tomsfastmath/src/numtheory/fp_invmod.c @ 643:a362b62d38b2 dropbear-tfm
Add tomsfastmath from git rev bfa4582842bc3bab42e4be4aed5703437049502a
with Makefile.in renamed
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 23 Nov 2011 18:10:20 +0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
642:33fd2f3499d2 | 643:a362b62d38b2 |
---|---|
1 /* TomsFastMath, a fast ISO C bignum library. | |
2 * | |
3 * This project is meant to fill in where LibTomMath | |
4 * falls short. That is speed ;-) | |
5 * | |
6 * This project is public domain and free for all purposes. | |
7 * | |
8 * Tom St Denis, [email protected] | |
9 */ | |
10 #include <tfm.h> | |
11 | |
12 static int fp_invmod_slow (fp_int * a, fp_int * b, fp_int * c) | |
13 { | |
14 fp_int x, y, u, v, A, B, C, D; | |
15 int res; | |
16 | |
17 /* b cannot be negative */ | |
18 if (b->sign == FP_NEG || fp_iszero(b) == 1) { | |
19 return FP_VAL; | |
20 } | |
21 | |
22 /* init temps */ | |
23 fp_init(&x); fp_init(&y); | |
24 fp_init(&u); fp_init(&v); | |
25 fp_init(&A); fp_init(&B); | |
26 fp_init(&C); fp_init(&D); | |
27 | |
28 /* x = a, y = b */ | |
29 if ((res = fp_mod(a, b, &x)) != FP_OKAY) { | |
30 return res; | |
31 } | |
32 fp_copy(b, &y); | |
33 | |
34 /* 2. [modified] if x,y are both even then return an error! */ | |
35 if (fp_iseven (&x) == 1 && fp_iseven (&y) == 1) { | |
36 return FP_VAL; | |
37 } | |
38 | |
39 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | |
40 fp_copy (&x, &u); | |
41 fp_copy (&y, &v); | |
42 fp_set (&A, 1); | |
43 fp_set (&D, 1); | |
44 | |
45 top: | |
46 /* 4. while u is even do */ | |
47 while (fp_iseven (&u) == 1) { | |
48 /* 4.1 u = u/2 */ | |
49 fp_div_2 (&u, &u); | |
50 | |
51 /* 4.2 if A or B is odd then */ | |
52 if (fp_isodd (&A) == 1 || fp_isodd (&B) == 1) { | |
53 /* A = (A+y)/2, B = (B-x)/2 */ | |
54 fp_add (&A, &y, &A); | |
55 fp_sub (&B, &x, &B); | |
56 } | |
57 /* A = A/2, B = B/2 */ | |
58 fp_div_2 (&A, &A); | |
59 fp_div_2 (&B, &B); | |
60 } | |
61 | |
62 /* 5. while v is even do */ | |
63 while (fp_iseven (&v) == 1) { | |
64 /* 5.1 v = v/2 */ | |
65 fp_div_2 (&v, &v); | |
66 | |
67 /* 5.2 if C or D is odd then */ | |
68 if (fp_isodd (&C) == 1 || fp_isodd (&D) == 1) { | |
69 /* C = (C+y)/2, D = (D-x)/2 */ | |
70 fp_add (&C, &y, &C); | |
71 fp_sub (&D, &x, &D); | |
72 } | |
73 /* C = C/2, D = D/2 */ | |
74 fp_div_2 (&C, &C); | |
75 fp_div_2 (&D, &D); | |
76 } | |
77 | |
78 /* 6. if u >= v then */ | |
79 if (fp_cmp (&u, &v) != FP_LT) { | |
80 /* u = u - v, A = A - C, B = B - D */ | |
81 fp_sub (&u, &v, &u); | |
82 fp_sub (&A, &C, &A); | |
83 fp_sub (&B, &D, &B); | |
84 } else { | |
85 /* v - v - u, C = C - A, D = D - B */ | |
86 fp_sub (&v, &u, &v); | |
87 fp_sub (&C, &A, &C); | |
88 fp_sub (&D, &B, &D); | |
89 } | |
90 | |
91 /* if not zero goto step 4 */ | |
92 if (fp_iszero (&u) == 0) | |
93 goto top; | |
94 | |
95 /* now a = C, b = D, gcd == g*v */ | |
96 | |
97 /* if v != 1 then there is no inverse */ | |
98 if (fp_cmp_d (&v, 1) != FP_EQ) { | |
99 return FP_VAL; | |
100 } | |
101 | |
102 /* if its too low */ | |
103 while (fp_cmp_d(&C, 0) == FP_LT) { | |
104 fp_add(&C, b, &C); | |
105 } | |
106 | |
107 /* too big */ | |
108 while (fp_cmp_mag(&C, b) != FP_LT) { | |
109 fp_sub(&C, b, &C); | |
110 } | |
111 | |
112 /* C is now the inverse */ | |
113 fp_copy(&C, c); | |
114 return FP_OKAY; | |
115 } | |
116 | |
117 /* c = 1/a (mod b) for odd b only */ | |
118 int fp_invmod(fp_int *a, fp_int *b, fp_int *c) | |
119 { | |
120 fp_int x, y, u, v, B, D; | |
121 int neg; | |
122 | |
123 /* 2. [modified] b must be odd */ | |
124 if (fp_iseven (b) == FP_YES) { | |
125 return fp_invmod_slow(a,b,c); | |
126 } | |
127 | |
128 /* init all our temps */ | |
129 fp_init(&x); fp_init(&y); | |
130 fp_init(&u); fp_init(&v); | |
131 fp_init(&B); fp_init(&D); | |
132 | |
133 /* x == modulus, y == value to invert */ | |
134 fp_copy(b, &x); | |
135 | |
136 /* we need y = |a| */ | |
137 fp_abs(a, &y); | |
138 | |
139 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | |
140 fp_copy(&x, &u); | |
141 fp_copy(&y, &v); | |
142 fp_set (&D, 1); | |
143 | |
144 top: | |
145 /* 4. while u is even do */ | |
146 while (fp_iseven (&u) == FP_YES) { | |
147 /* 4.1 u = u/2 */ | |
148 fp_div_2 (&u, &u); | |
149 | |
150 /* 4.2 if B is odd then */ | |
151 if (fp_isodd (&B) == FP_YES) { | |
152 fp_sub (&B, &x, &B); | |
153 } | |
154 /* B = B/2 */ | |
155 fp_div_2 (&B, &B); | |
156 } | |
157 | |
158 /* 5. while v is even do */ | |
159 while (fp_iseven (&v) == FP_YES) { | |
160 /* 5.1 v = v/2 */ | |
161 fp_div_2 (&v, &v); | |
162 | |
163 /* 5.2 if D is odd then */ | |
164 if (fp_isodd (&D) == FP_YES) { | |
165 /* D = (D-x)/2 */ | |
166 fp_sub (&D, &x, &D); | |
167 } | |
168 /* D = D/2 */ | |
169 fp_div_2 (&D, &D); | |
170 } | |
171 | |
172 /* 6. if u >= v then */ | |
173 if (fp_cmp (&u, &v) != FP_LT) { | |
174 /* u = u - v, B = B - D */ | |
175 fp_sub (&u, &v, &u); | |
176 fp_sub (&B, &D, &B); | |
177 } else { | |
178 /* v - v - u, D = D - B */ | |
179 fp_sub (&v, &u, &v); | |
180 fp_sub (&D, &B, &D); | |
181 } | |
182 | |
183 /* if not zero goto step 4 */ | |
184 if (fp_iszero (&u) == FP_NO) { | |
185 goto top; | |
186 } | |
187 | |
188 /* now a = C, b = D, gcd == g*v */ | |
189 | |
190 /* if v != 1 then there is no inverse */ | |
191 if (fp_cmp_d (&v, 1) != FP_EQ) { | |
192 return FP_VAL; | |
193 } | |
194 | |
195 /* b is now the inverse */ | |
196 neg = a->sign; | |
197 while (D.sign == FP_NEG) { | |
198 fp_add (&D, b, &D); | |
199 } | |
200 fp_copy (&D, c); | |
201 c->sign = neg; | |
202 return FP_OKAY; | |
203 } | |
204 | |
205 /* $Source$ */ | |
206 /* $Revision$ */ | |
207 /* $Date$ */ |