Mercurial > dropbear
comparison bn_mp_div.c @ 142:d29b64170cf0 libtommath-orig
import of libtommath 0.32
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 19 Dec 2004 11:33:56 +0000 |
parents | 86e0b50a9b58 |
children | d8254fc979e9 |
comparison
equal
deleted
inserted
replaced
19:e1037a1e12e7 | 142:d29b64170cf0 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_DIV_C | |
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | 3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
2 * | 4 * |
3 * LibTomMath is a library that provides multiple-precision | 5 * LibTomMath is a library that provides multiple-precision |
4 * integer arithmetic as well as number theoretic functionality. | 6 * integer arithmetic as well as number theoretic functionality. |
5 * | 7 * |
10 * The library is free for all purposes without any express | 12 * The library is free for all purposes without any express |
11 * guarantee it works. | 13 * guarantee it works. |
12 * | 14 * |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | 15 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
14 */ | 16 */ |
15 #include <tommath.h> | 17 |
18 #ifdef BN_MP_DIV_SMALL | |
19 | |
20 /* slower bit-bang division... also smaller */ | |
21 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) | |
22 { | |
23 mp_int ta, tb, tq, q; | |
24 int res, n, n2; | |
25 | |
26 /* is divisor zero ? */ | |
27 if (mp_iszero (b) == 1) { | |
28 return MP_VAL; | |
29 } | |
30 | |
31 /* if a < b then q=0, r = a */ | |
32 if (mp_cmp_mag (a, b) == MP_LT) { | |
33 if (d != NULL) { | |
34 res = mp_copy (a, d); | |
35 } else { | |
36 res = MP_OKAY; | |
37 } | |
38 if (c != NULL) { | |
39 mp_zero (c); | |
40 } | |
41 return res; | |
42 } | |
43 | |
44 /* init our temps */ | |
45 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { | |
46 return res; | |
47 } | |
48 | |
49 | |
50 mp_set(&tq, 1); | |
51 n = mp_count_bits(a) - mp_count_bits(b); | |
52 if (((res = mp_copy(a, &ta)) != MP_OKAY) || | |
53 ((res = mp_copy(b, &tb)) != MP_OKAY) || | |
54 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || | |
55 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { | |
56 goto __ERR; | |
57 } | |
58 | |
59 while (n-- >= 0) { | |
60 if (mp_cmp(&tb, &ta) != MP_GT) { | |
61 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || | |
62 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { | |
63 goto __ERR; | |
64 } | |
65 } | |
66 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || | |
67 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { | |
68 goto __ERR; | |
69 } | |
70 } | |
71 | |
72 /* now q == quotient and ta == remainder */ | |
73 n = a->sign; | |
74 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); | |
75 if (c != NULL) { | |
76 mp_exch(c, &q); | |
77 c->sign = n2; | |
78 } | |
79 if (d != NULL) { | |
80 mp_exch(d, &ta); | |
81 d->sign = n; | |
82 } | |
83 __ERR: | |
84 mp_clear_multi(&ta, &tb, &tq, &q, NULL); | |
85 return res; | |
86 } | |
87 | |
88 #else | |
16 | 89 |
17 /* integer signed division. | 90 /* integer signed division. |
18 * c*b + d == a [e.g. a/b, c=quotient, d=remainder] | 91 * c*b + d == a [e.g. a/b, c=quotient, d=remainder] |
19 * HAC pp.598 Algorithm 14.20 | 92 * HAC pp.598 Algorithm 14.20 |
20 * | 93 * |
185 /* now q is the quotient and x is the remainder | 258 /* now q is the quotient and x is the remainder |
186 * [which we have to normalize] | 259 * [which we have to normalize] |
187 */ | 260 */ |
188 | 261 |
189 /* get sign before writing to c */ | 262 /* get sign before writing to c */ |
190 x.sign = a->sign; | 263 x.sign = x.used == 0 ? MP_ZPOS : a->sign; |
191 | 264 |
192 if (c != NULL) { | 265 if (c != NULL) { |
193 mp_clamp (&q); | 266 mp_clamp (&q); |
194 mp_exch (&q, c); | 267 mp_exch (&q, c); |
195 c->sign = neg; | 268 c->sign = neg; |
207 __T2:mp_clear (&t2); | 280 __T2:mp_clear (&t2); |
208 __T1:mp_clear (&t1); | 281 __T1:mp_clear (&t1); |
209 __Q:mp_clear (&q); | 282 __Q:mp_clear (&q); |
210 return res; | 283 return res; |
211 } | 284 } |
285 | |
286 #endif | |
287 | |
288 #endif |