Mercurial > dropbear
comparison bn_mp_montgomery_calc_normalization.c @ 142:d29b64170cf0 libtommath-orig
import of libtommath 0.32
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 19 Dec 2004 11:33:56 +0000 |
parents | 86e0b50a9b58 |
children | d8254fc979e9 |
comparison
equal
deleted
inserted
replaced
19:e1037a1e12e7 | 142:d29b64170cf0 |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C | |
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | 3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
2 * | 4 * |
3 * LibTomMath is a library that provides multiple-precision | 5 * LibTomMath is a library that provides multiple-precision |
4 * integer arithmetic as well as number theoretic functionality. | 6 * integer arithmetic as well as number theoretic functionality. |
5 * | 7 * |
10 * The library is free for all purposes without any express | 12 * The library is free for all purposes without any express |
11 * guarantee it works. | 13 * guarantee it works. |
12 * | 14 * |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | 15 * Tom St Denis, [email protected], http://math.libtomcrypt.org |
14 */ | 16 */ |
15 #include <tommath.h> | |
16 | 17 |
17 /* calculates a = B^n mod b for Montgomery reduction | 18 /* |
18 * Where B is the base [e.g. 2^DIGIT_BIT]. | |
19 * B^n mod b is computed by first computing | |
20 * A = B^(n-1) which doesn't require a reduction but a simple OR. | |
21 * then C = A * B = B^n is computed by performing upto DIGIT_BIT | |
22 * shifts with subtractions when the result is greater than b. | 19 * shifts with subtractions when the result is greater than b. |
23 * | 20 * |
24 * The method is slightly modified to shift B unconditionally upto just under | 21 * The method is slightly modified to shift B unconditionally upto just under |
25 * the leading bit of b. This saves alot of multiple precision shifting. | 22 * the leading bit of b. This saves alot of multiple precision shifting. |
26 */ | 23 */ |
27 int | 24 int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) |
28 mp_montgomery_calc_normalization (mp_int * a, mp_int * b) | |
29 { | 25 { |
30 int x, bits, res; | 26 int x, bits, res; |
31 | 27 |
32 /* how many bits of last digit does b use */ | 28 /* how many bits of last digit does b use */ |
33 bits = mp_count_bits (b) % DIGIT_BIT; | 29 bits = mp_count_bits (b) % DIGIT_BIT; |
34 | 30 |
35 /* compute A = B^(n-1) * 2^(bits-1) */ | 31 |
36 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { | 32 if (b->used > 1) { |
37 return res; | 33 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { |
34 return res; | |
35 } | |
36 } else { | |
37 mp_set(a, 1); | |
38 bits = 1; | |
38 } | 39 } |
40 | |
39 | 41 |
40 /* now compute C = A * B mod b */ | 42 /* now compute C = A * B mod b */ |
41 for (x = bits - 1; x < (int)DIGIT_BIT; x++) { | 43 for (x = bits - 1; x < (int)DIGIT_BIT; x++) { |
42 if ((res = mp_mul_2 (a, a)) != MP_OKAY) { | 44 if ((res = mp_mul_2 (a, a)) != MP_OKAY) { |
43 return res; | 45 return res; |
49 } | 51 } |
50 } | 52 } |
51 | 53 |
52 return MP_OKAY; | 54 return MP_OKAY; |
53 } | 55 } |
56 #endif |