Mercurial > dropbear
comparison demo/demo.c @ 142:d29b64170cf0 libtommath-orig
import of libtommath 0.32
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 19 Dec 2004 11:33:56 +0000 |
parents | 86e0b50a9b58 |
children | d8254fc979e9 |
comparison
equal
deleted
inserted
replaced
19:e1037a1e12e7 | 142:d29b64170cf0 |
---|---|
1 #include <time.h> | 1 #include <time.h> |
2 | |
3 #define TESTING | |
4 | 2 |
5 #ifdef IOWNANATHLON | 3 #ifdef IOWNANATHLON |
6 #include <unistd.h> | 4 #include <unistd.h> |
7 #define SLEEP sleep(4) | 5 #define SLEEP sleep(4) |
8 #else | 6 #else |
9 #define SLEEP | 7 #define SLEEP |
10 #endif | 8 #endif |
11 | 9 |
12 #include "tommath.h" | 10 #include "tommath.h" |
13 | |
14 #ifdef TIMER | |
15 ulong64 _tt; | |
16 | |
17 #if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64) | |
18 /* RDTSC from Scott Duplichan */ | |
19 static ulong64 TIMFUNC (void) | |
20 { | |
21 #if defined __GNUC__ | |
22 #ifdef __i386__ | |
23 ulong64 a; | |
24 __asm__ __volatile__ ("rdtsc ":"=A" (a)); | |
25 return a; | |
26 #else /* gcc-IA64 version */ | |
27 unsigned long result; | |
28 __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); | |
29 while (__builtin_expect ((int) result == -1, 0)) | |
30 __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); | |
31 return result; | |
32 #endif | |
33 | |
34 // Microsoft and Intel Windows compilers | |
35 #elif defined _M_IX86 | |
36 __asm rdtsc | |
37 #elif defined _M_AMD64 | |
38 return __rdtsc (); | |
39 #elif defined _M_IA64 | |
40 #if defined __INTEL_COMPILER | |
41 #include <ia64intrin.h> | |
42 #endif | |
43 return __getReg (3116); | |
44 #else | |
45 #error need rdtsc function for this build | |
46 #endif | |
47 } | |
48 #else | |
49 #define TIMFUNC clock | |
50 #endif | |
51 | |
52 ulong64 rdtsc(void) { return TIMFUNC() - _tt; } | |
53 void reset(void) { _tt = TIMFUNC(); } | |
54 | |
55 #endif | |
56 | 11 |
57 void ndraw(mp_int *a, char *name) | 12 void ndraw(mp_int *a, char *name) |
58 { | 13 { |
59 char buf[4096]; | 14 char buf[4096]; |
60 printf("%s: ", name); | 15 printf("%s: ", name); |
87 for (x = 0; x < len; x++) dst[x] = rand() & 0xFF; | 42 for (x = 0; x < len; x++) dst[x] = rand() & 0xFF; |
88 return len; | 43 return len; |
89 } | 44 } |
90 | 45 |
91 | 46 |
92 #define DO2(x) x; x; | |
93 #define DO4(x) DO2(x); DO2(x); | |
94 #define DO8(x) DO4(x); DO4(x); | |
95 #define DO(x) DO8(x); DO8(x); | |
96 | 47 |
97 char cmd[4096], buf[4096]; | 48 char cmd[4096], buf[4096]; |
98 int main(void) | 49 int main(void) |
99 { | 50 { |
100 mp_int a, b, c, d, e, f; | 51 mp_int a, b, c, d, e, f; |
101 unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, | 52 unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, |
102 div2_n, mul2_n, add_d_n, sub_d_n, t; | 53 div2_n, mul2_n, add_d_n, sub_d_n, t; |
103 unsigned rr; | 54 unsigned rr; |
104 int i, n, err, cnt, ix, old_kara_m, old_kara_s; | 55 int i, n, err, cnt, ix, old_kara_m, old_kara_s; |
105 | 56 |
106 #ifdef TIMER | |
107 ulong64 tt, CLK_PER_SEC; | |
108 FILE *log, *logb, *logc; | |
109 #endif | |
110 | 57 |
111 mp_init(&a); | 58 mp_init(&a); |
112 mp_init(&b); | 59 mp_init(&b); |
113 mp_init(&c); | 60 mp_init(&c); |
114 mp_init(&d); | 61 mp_init(&d); |
115 mp_init(&e); | 62 mp_init(&e); |
116 mp_init(&f); | 63 mp_init(&f); |
117 | 64 |
118 srand(time(NULL)); | 65 srand(time(NULL)); |
119 | 66 |
120 #ifdef TESTING | 67 #if 0 |
121 // test mp_get_int | 68 // test mp_get_int |
122 printf("Testing: mp_get_int\n"); | 69 printf("Testing: mp_get_int\n"); |
123 for(i=0;i<1000;++i) { | 70 for(i=0;i<1000;++i) { |
124 t = (unsigned long)rand()*rand()+1; | 71 t = ((unsigned long)rand()*rand()+1)&0xFFFFFFFF; |
125 mp_set_int(&a,t); | 72 mp_set_int(&a,t); |
126 if (t!=mp_get_int(&a)) { | 73 if (t!=mp_get_int(&a)) { |
127 printf("mp_get_int() bad result!\n"); | 74 printf("mp_get_int() bad result!\n"); |
128 return 1; | 75 return 1; |
129 } | 76 } |
139 return 1; | 86 return 1; |
140 } | 87 } |
141 | 88 |
142 // test mp_sqrt | 89 // test mp_sqrt |
143 printf("Testing: mp_sqrt\n"); | 90 printf("Testing: mp_sqrt\n"); |
144 for (i=0;i<10000;++i) { | 91 for (i=0;i<1000;++i) { |
145 printf("%6d\r", i); fflush(stdout); | 92 printf("%6d\r", i); fflush(stdout); |
146 n = (rand()&15)+1; | 93 n = (rand()&15)+1; |
147 mp_rand(&a,n); | 94 mp_rand(&a,n); |
148 if (mp_sqrt(&a,&b) != MP_OKAY) | 95 if (mp_sqrt(&a,&b) != MP_OKAY) |
149 { printf("mp_sqrt() error!\n"); | 96 { printf("mp_sqrt() error!\n"); |
155 return 1; | 102 return 1; |
156 } | 103 } |
157 } | 104 } |
158 | 105 |
159 printf("\nTesting: mp_is_square\n"); | 106 printf("\nTesting: mp_is_square\n"); |
160 for (i=0;i<100000;++i) { | 107 for (i=0;i<1000;++i) { |
161 printf("%6d\r", i); fflush(stdout); | 108 printf("%6d\r", i); fflush(stdout); |
162 | 109 |
163 /* test mp_is_square false negatives */ | 110 /* test mp_is_square false negatives */ |
164 n = (rand()&7)+1; | 111 n = (rand()&7)+1; |
165 mp_rand(&a,n); | 112 mp_rand(&a,n); |
184 return 1; | 131 return 1; |
185 } | 132 } |
186 | 133 |
187 } | 134 } |
188 printf("\n\n"); | 135 printf("\n\n"); |
189 #endif | 136 |
190 | |
191 #ifdef TESTING | |
192 /* test for size */ | 137 /* test for size */ |
193 for (ix = 16; ix < 512; ix++) { | 138 for (ix = 10; ix < 256; ix++) { |
194 printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout); | 139 printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout); |
195 err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL); | 140 err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL); |
196 if (err != MP_OKAY) { | 141 if (err != MP_OKAY) { |
197 printf("failed with err code %d\n", err); | 142 printf("failed with err code %d\n", err); |
198 return EXIT_FAILURE; | 143 return EXIT_FAILURE; |
201 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); | 146 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); |
202 return EXIT_FAILURE; | 147 return EXIT_FAILURE; |
203 } | 148 } |
204 } | 149 } |
205 | 150 |
206 for (ix = 16; ix < 512; ix++) { | 151 for (ix = 16; ix < 256; ix++) { |
207 printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout); | 152 printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout); |
208 err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL); | 153 err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL); |
209 if (err != MP_OKAY) { | 154 if (err != MP_OKAY) { |
210 printf("failed with err code %d\n", err); | 155 printf("failed with err code %d\n", err); |
211 return EXIT_FAILURE; | 156 return EXIT_FAILURE; |
223 return EXIT_FAILURE; | 168 return EXIT_FAILURE; |
224 } | 169 } |
225 } | 170 } |
226 | 171 |
227 printf("\n\n"); | 172 printf("\n\n"); |
228 #endif | 173 |
229 | |
230 #ifdef TESTING | |
231 mp_read_radix(&a, "123456", 10); | 174 mp_read_radix(&a, "123456", 10); |
232 mp_toradix_n(&a, buf, 10, 3); | 175 mp_toradix_n(&a, buf, 10, 3); |
233 printf("a == %s\n", buf); | 176 printf("a == %s\n", buf); |
234 mp_toradix_n(&a, buf, 10, 4); | 177 mp_toradix_n(&a, buf, 10, 4); |
235 printf("a == %s\n", buf); | 178 printf("a == %s\n", buf); |
236 mp_toradix_n(&a, buf, 10, 30); | 179 mp_toradix_n(&a, buf, 10, 30); |
237 printf("a == %s\n", buf); | 180 printf("a == %s\n", buf); |
238 #endif | |
239 | 181 |
240 | 182 |
241 #if 0 | 183 #if 0 |
242 for (;;) { | 184 for (;;) { |
243 fgets(buf, sizeof(buf), stdin); | 185 fgets(buf, sizeof(buf), stdin); |
246 mp_toradix(&a, buf, 10); | 188 mp_toradix(&a, buf, 10); |
247 printf("%s, %lu\n", buf, a.dp[0] & 3); | 189 printf("%s, %lu\n", buf, a.dp[0] & 3); |
248 } | 190 } |
249 #endif | 191 #endif |
250 | 192 |
251 #if 0 | |
252 { | |
253 mp_word aa, bb; | |
254 | |
255 for (;;) { | |
256 aa = abs(rand()) & MP_MASK; | |
257 bb = abs(rand()) & MP_MASK; | |
258 if (MULT(aa,bb) != (aa*bb)) { | |
259 printf("%llu * %llu == %llu or %llu?\n", aa, bb, (ulong64)MULT(aa,bb), (ulong64)(aa*bb)); | |
260 return 0; | |
261 } | |
262 } | |
263 } | |
264 #endif | |
265 | |
266 #ifdef TESTING | |
267 /* test mp_cnt_lsb */ | 193 /* test mp_cnt_lsb */ |
268 printf("testing mp_cnt_lsb...\n"); | 194 printf("testing mp_cnt_lsb...\n"); |
269 mp_set(&a, 1); | 195 mp_set(&a, 1); |
270 for (ix = 0; ix < 1024; ix++) { | 196 for (ix = 0; ix < 1024; ix++) { |
271 if (mp_cnt_lsb(&a) != ix) { | 197 if (mp_cnt_lsb(&a) != ix) { |
272 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); | 198 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); |
273 return 0; | 199 return 0; |
274 } | 200 } |
275 mp_mul_2(&a, &a); | 201 mp_mul_2(&a, &a); |
276 } | 202 } |
277 #endif | |
278 | 203 |
279 /* test mp_reduce_2k */ | 204 /* test mp_reduce_2k */ |
280 #ifdef TESTING | |
281 printf("Testing mp_reduce_2k...\n"); | 205 printf("Testing mp_reduce_2k...\n"); |
282 for (cnt = 3; cnt <= 384; ++cnt) { | 206 for (cnt = 3; cnt <= 128; ++cnt) { |
283 mp_digit tmp; | 207 mp_digit tmp; |
284 mp_2expt(&a, cnt); | 208 mp_2expt(&a, cnt); |
285 mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ | 209 mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ |
286 | 210 |
287 | 211 |
288 printf("\nTesting %4d bits", cnt); | 212 printf("\nTesting %4d bits", cnt); |
289 printf("(%d)", mp_reduce_is_2k(&a)); | 213 printf("(%d)", mp_reduce_is_2k(&a)); |
290 mp_reduce_2k_setup(&a, &tmp); | 214 mp_reduce_2k_setup(&a, &tmp); |
291 printf("(%d)", tmp); | 215 printf("(%d)", tmp); |
292 for (ix = 0; ix < 10000; ix++) { | 216 for (ix = 0; ix < 1000; ix++) { |
293 if (!(ix & 127)) {printf("."); fflush(stdout); } | 217 if (!(ix & 127)) {printf("."); fflush(stdout); } |
294 mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2); | 218 mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2); |
295 mp_copy(&c, &b); | 219 mp_copy(&c, &b); |
296 mp_mod(&c, &a, &c); | 220 mp_mod(&c, &a, &c); |
297 mp_reduce_2k(&b, &a, 1); | 221 mp_reduce_2k(&b, &a, 1); |
299 printf("FAILED\n"); | 223 printf("FAILED\n"); |
300 exit(0); | 224 exit(0); |
301 } | 225 } |
302 } | 226 } |
303 } | 227 } |
304 #endif | |
305 | |
306 | 228 |
307 /* test mp_div_3 */ | 229 /* test mp_div_3 */ |
308 #ifdef TESTING | |
309 printf("Testing mp_div_3...\n"); | 230 printf("Testing mp_div_3...\n"); |
310 mp_set(&d, 3); | 231 mp_set(&d, 3); |
311 for (cnt = 0; cnt < 1000000; ) { | 232 for (cnt = 0; cnt < 10000; ) { |
312 mp_digit r1, r2; | 233 mp_digit r1, r2; |
313 | 234 |
314 if (!(++cnt & 127)) printf("%9d\r", cnt); | 235 if (!(++cnt & 127)) printf("%9d\r", cnt); |
315 mp_rand(&a, abs(rand()) % 128 + 1); | 236 mp_rand(&a, abs(rand()) % 128 + 1); |
316 mp_div(&a, &d, &b, &e); | 237 mp_div(&a, &d, &b, &e); |
319 if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { | 240 if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { |
320 printf("\n\nmp_div_3 => Failure\n"); | 241 printf("\n\nmp_div_3 => Failure\n"); |
321 } | 242 } |
322 } | 243 } |
323 printf("\n\nPassed div_3 testing\n"); | 244 printf("\n\nPassed div_3 testing\n"); |
324 #endif | |
325 | 245 |
326 /* test the DR reduction */ | 246 /* test the DR reduction */ |
327 #ifdef TESTING | |
328 printf("testing mp_dr_reduce...\n"); | 247 printf("testing mp_dr_reduce...\n"); |
329 for (cnt = 2; cnt < 128; cnt++) { | 248 for (cnt = 2; cnt < 32; cnt++) { |
330 printf("%d digit modulus\n", cnt); | 249 printf("%d digit modulus\n", cnt); |
331 mp_grow(&a, cnt); | 250 mp_grow(&a, cnt); |
332 mp_zero(&a); | 251 mp_zero(&a); |
333 for (ix = 1; ix < cnt; ix++) { | 252 for (ix = 1; ix < cnt; ix++) { |
334 a.dp[ix] = MP_MASK; | 253 a.dp[ix] = MP_MASK; |
335 } | 254 } |
336 a.used = cnt; | 255 a.used = cnt; |
337 mp_prime_next_prime(&a, 3, 0); | 256 a.dp[0] = 3; |
338 | 257 |
339 mp_rand(&b, cnt - 1); | 258 mp_rand(&b, cnt - 1); |
340 mp_copy(&b, &c); | 259 mp_copy(&b, &c); |
341 | 260 |
342 rr = 0; | 261 rr = 0; |
344 if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); } | 263 if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); } |
345 mp_sqr(&b, &b); mp_add_d(&b, 1, &b); | 264 mp_sqr(&b, &b); mp_add_d(&b, 1, &b); |
346 mp_copy(&b, &c); | 265 mp_copy(&b, &c); |
347 | 266 |
348 mp_mod(&b, &a, &b); | 267 mp_mod(&b, &a, &b); |
349 mp_dr_reduce(&c, &a, (1<<DIGIT_BIT)-a.dp[0]); | 268 mp_dr_reduce(&c, &a, (((mp_digit)1)<<DIGIT_BIT)-a.dp[0]); |
350 | 269 |
351 if (mp_cmp(&b, &c) != MP_EQ) { | 270 if (mp_cmp(&b, &c) != MP_EQ) { |
352 printf("Failed on trial %lu\n", rr); exit(-1); | 271 printf("Failed on trial %lu\n", rr); exit(-1); |
353 | 272 |
354 } | 273 } |
355 } while (++rr < 100000); | 274 } while (++rr < 500); |
356 printf("Passed DR test for %d digits\n", cnt); | 275 printf("Passed DR test for %d digits\n", cnt); |
357 } | 276 } |
358 #endif | |
359 | |
360 #ifdef TIMER | |
361 /* temp. turn off TOOM */ | |
362 TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; | |
363 | |
364 reset(); | |
365 sleep(1); | |
366 CLK_PER_SEC = rdtsc(); | |
367 | |
368 printf("CLK_PER_SEC == %lu\n", CLK_PER_SEC); | |
369 | |
370 | |
371 log = fopen("logs/add.log", "w"); | |
372 for (cnt = 8; cnt <= 128; cnt += 8) { | |
373 SLEEP; | |
374 mp_rand(&a, cnt); | |
375 mp_rand(&b, cnt); | |
376 reset(); | |
377 rr = 0; | |
378 do { | |
379 DO(mp_add(&a,&b,&c)); | |
380 rr += 16; | |
381 } while (rdtsc() < (CLK_PER_SEC * 2)); | |
382 tt = rdtsc(); | |
383 printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); | |
384 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); | |
385 } | |
386 fclose(log); | |
387 | |
388 log = fopen("logs/sub.log", "w"); | |
389 for (cnt = 8; cnt <= 128; cnt += 8) { | |
390 SLEEP; | |
391 mp_rand(&a, cnt); | |
392 mp_rand(&b, cnt); | |
393 reset(); | |
394 rr = 0; | |
395 do { | |
396 DO(mp_sub(&a,&b,&c)); | |
397 rr += 16; | |
398 } while (rdtsc() < (CLK_PER_SEC * 2)); | |
399 tt = rdtsc(); | |
400 printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); | |
401 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); | |
402 } | |
403 fclose(log); | |
404 | |
405 /* do mult/square twice, first without karatsuba and second with */ | |
406 mult_test: | |
407 old_kara_m = KARATSUBA_MUL_CUTOFF; | |
408 old_kara_s = KARATSUBA_SQR_CUTOFF; | |
409 for (ix = 0; ix < 2; ix++) { | |
410 printf("With%s Karatsuba\n", (ix==0)?"out":""); | |
411 | |
412 KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m; | |
413 KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s; | |
414 | |
415 log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w"); | |
416 for (cnt = 32; cnt <= 288; cnt += 8) { | |
417 SLEEP; | |
418 mp_rand(&a, cnt); | |
419 mp_rand(&b, cnt); | |
420 reset(); | |
421 rr = 0; | |
422 do { | |
423 DO(mp_mul(&a, &b, &c)); | |
424 rr += 16; | |
425 } while (rdtsc() < (CLK_PER_SEC * 2)); | |
426 tt = rdtsc(); | |
427 printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); | |
428 fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); | |
429 } | |
430 fclose(log); | |
431 | |
432 log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w"); | |
433 for (cnt = 32; cnt <= 288; cnt += 8) { | |
434 SLEEP; | |
435 mp_rand(&a, cnt); | |
436 reset(); | |
437 rr = 0; | |
438 do { | |
439 DO(mp_sqr(&a, &b)); | |
440 rr += 16; | |
441 } while (rdtsc() < (CLK_PER_SEC * 2)); | |
442 tt = rdtsc(); | |
443 printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); | |
444 fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log); | |
445 } | |
446 fclose(log); | |
447 | |
448 } | |
449 expt_test: | |
450 { | |
451 char *primes[] = { | |
452 /* 2K moduli mersenne primes */ | |
453 "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", | |
454 "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", | |
455 "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", | |
456 "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", | |
457 "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", | |
458 "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", | |
459 | |
460 /* DR moduli */ | |
461 "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", | |
462 "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", | |
463 "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", | |
464 "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", | |
465 "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", | |
466 "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", | |
467 "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", | |
468 | |
469 /* generic unrestricted moduli */ | |
470 "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", | |
471 "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", | |
472 "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", | |
473 "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", | |
474 "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", | |
475 "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", | |
476 "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", | |
477 NULL | |
478 }; | |
479 log = fopen("logs/expt.log", "w"); | |
480 logb = fopen("logs/expt_dr.log", "w"); | |
481 logc = fopen("logs/expt_2k.log", "w"); | |
482 for (n = 0; primes[n]; n++) { | |
483 SLEEP; | |
484 mp_read_radix(&a, primes[n], 10); | |
485 mp_zero(&b); | |
486 for (rr = 0; rr < mp_count_bits(&a); rr++) { | |
487 mp_mul_2(&b, &b); | |
488 b.dp[0] |= lbit(); | |
489 b.used += 1; | |
490 } | |
491 mp_sub_d(&a, 1, &c); | |
492 mp_mod(&b, &c, &b); | |
493 mp_set(&c, 3); | |
494 reset(); | |
495 rr = 0; | |
496 do { | |
497 DO(mp_exptmod(&c, &b, &a, &d)); | |
498 rr += 16; | |
499 } while (rdtsc() < (CLK_PER_SEC * 2)); | |
500 tt = rdtsc(); | |
501 mp_sub_d(&a, 1, &e); | |
502 mp_sub(&e, &b, &b); | |
503 mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */ | |
504 mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */ | |
505 if (mp_cmp_d(&d, 1)) { | |
506 printf("Different (%d)!!!\n", mp_count_bits(&a)); | |
507 draw(&d); | |
508 exit(0); | |
509 } | |
510 printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); | |
511 fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); | |
512 } | |
513 } | |
514 fclose(log); | |
515 fclose(logb); | |
516 fclose(logc); | |
517 | |
518 log = fopen("logs/invmod.log", "w"); | |
519 for (cnt = 4; cnt <= 128; cnt += 4) { | |
520 SLEEP; | |
521 mp_rand(&a, cnt); | |
522 mp_rand(&b, cnt); | |
523 | |
524 do { | |
525 mp_add_d(&b, 1, &b); | |
526 mp_gcd(&a, &b, &c); | |
527 } while (mp_cmp_d(&c, 1) != MP_EQ); | |
528 | |
529 reset(); | |
530 rr = 0; | |
531 do { | |
532 DO(mp_invmod(&b, &a, &c)); | |
533 rr += 16; | |
534 } while (rdtsc() < (CLK_PER_SEC * 2)); | |
535 tt = rdtsc(); | |
536 mp_mulmod(&b, &c, &a, &d); | |
537 if (mp_cmp_d(&d, 1) != MP_EQ) { | |
538 printf("Failed to invert\n"); | |
539 return 0; | |
540 } | |
541 printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt); | |
542 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); | |
543 } | |
544 fclose(log); | |
545 | |
546 return 0; | |
547 | 277 |
548 #endif | 278 #endif |
549 | 279 |
550 div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = | 280 div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = |
551 sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0; | 281 sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0; |