comparison demo/demo.c @ 142:d29b64170cf0 libtommath-orig

import of libtommath 0.32
author Matt Johnston <matt@ucc.asn.au>
date Sun, 19 Dec 2004 11:33:56 +0000
parents 86e0b50a9b58
children d8254fc979e9
comparison
equal deleted inserted replaced
19:e1037a1e12e7 142:d29b64170cf0
1 #include <time.h> 1 #include <time.h>
2
3 #define TESTING
4 2
5 #ifdef IOWNANATHLON 3 #ifdef IOWNANATHLON
6 #include <unistd.h> 4 #include <unistd.h>
7 #define SLEEP sleep(4) 5 #define SLEEP sleep(4)
8 #else 6 #else
9 #define SLEEP 7 #define SLEEP
10 #endif 8 #endif
11 9
12 #include "tommath.h" 10 #include "tommath.h"
13
14 #ifdef TIMER
15 ulong64 _tt;
16
17 #if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64)
18 /* RDTSC from Scott Duplichan */
19 static ulong64 TIMFUNC (void)
20 {
21 #if defined __GNUC__
22 #ifdef __i386__
23 ulong64 a;
24 __asm__ __volatile__ ("rdtsc ":"=A" (a));
25 return a;
26 #else /* gcc-IA64 version */
27 unsigned long result;
28 __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
29 while (__builtin_expect ((int) result == -1, 0))
30 __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
31 return result;
32 #endif
33
34 // Microsoft and Intel Windows compilers
35 #elif defined _M_IX86
36 __asm rdtsc
37 #elif defined _M_AMD64
38 return __rdtsc ();
39 #elif defined _M_IA64
40 #if defined __INTEL_COMPILER
41 #include <ia64intrin.h>
42 #endif
43 return __getReg (3116);
44 #else
45 #error need rdtsc function for this build
46 #endif
47 }
48 #else
49 #define TIMFUNC clock
50 #endif
51
52 ulong64 rdtsc(void) { return TIMFUNC() - _tt; }
53 void reset(void) { _tt = TIMFUNC(); }
54
55 #endif
56 11
57 void ndraw(mp_int *a, char *name) 12 void ndraw(mp_int *a, char *name)
58 { 13 {
59 char buf[4096]; 14 char buf[4096];
60 printf("%s: ", name); 15 printf("%s: ", name);
87 for (x = 0; x < len; x++) dst[x] = rand() & 0xFF; 42 for (x = 0; x < len; x++) dst[x] = rand() & 0xFF;
88 return len; 43 return len;
89 } 44 }
90 45
91 46
92 #define DO2(x) x; x;
93 #define DO4(x) DO2(x); DO2(x);
94 #define DO8(x) DO4(x); DO4(x);
95 #define DO(x) DO8(x); DO8(x);
96 47
97 char cmd[4096], buf[4096]; 48 char cmd[4096], buf[4096];
98 int main(void) 49 int main(void)
99 { 50 {
100 mp_int a, b, c, d, e, f; 51 mp_int a, b, c, d, e, f;
101 unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, 52 unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n,
102 div2_n, mul2_n, add_d_n, sub_d_n, t; 53 div2_n, mul2_n, add_d_n, sub_d_n, t;
103 unsigned rr; 54 unsigned rr;
104 int i, n, err, cnt, ix, old_kara_m, old_kara_s; 55 int i, n, err, cnt, ix, old_kara_m, old_kara_s;
105 56
106 #ifdef TIMER
107 ulong64 tt, CLK_PER_SEC;
108 FILE *log, *logb, *logc;
109 #endif
110 57
111 mp_init(&a); 58 mp_init(&a);
112 mp_init(&b); 59 mp_init(&b);
113 mp_init(&c); 60 mp_init(&c);
114 mp_init(&d); 61 mp_init(&d);
115 mp_init(&e); 62 mp_init(&e);
116 mp_init(&f); 63 mp_init(&f);
117 64
118 srand(time(NULL)); 65 srand(time(NULL));
119 66
120 #ifdef TESTING 67 #if 0
121 // test mp_get_int 68 // test mp_get_int
122 printf("Testing: mp_get_int\n"); 69 printf("Testing: mp_get_int\n");
123 for(i=0;i<1000;++i) { 70 for(i=0;i<1000;++i) {
124 t = (unsigned long)rand()*rand()+1; 71 t = ((unsigned long)rand()*rand()+1)&0xFFFFFFFF;
125 mp_set_int(&a,t); 72 mp_set_int(&a,t);
126 if (t!=mp_get_int(&a)) { 73 if (t!=mp_get_int(&a)) {
127 printf("mp_get_int() bad result!\n"); 74 printf("mp_get_int() bad result!\n");
128 return 1; 75 return 1;
129 } 76 }
139 return 1; 86 return 1;
140 } 87 }
141 88
142 // test mp_sqrt 89 // test mp_sqrt
143 printf("Testing: mp_sqrt\n"); 90 printf("Testing: mp_sqrt\n");
144 for (i=0;i<10000;++i) { 91 for (i=0;i<1000;++i) {
145 printf("%6d\r", i); fflush(stdout); 92 printf("%6d\r", i); fflush(stdout);
146 n = (rand()&15)+1; 93 n = (rand()&15)+1;
147 mp_rand(&a,n); 94 mp_rand(&a,n);
148 if (mp_sqrt(&a,&b) != MP_OKAY) 95 if (mp_sqrt(&a,&b) != MP_OKAY)
149 { printf("mp_sqrt() error!\n"); 96 { printf("mp_sqrt() error!\n");
155 return 1; 102 return 1;
156 } 103 }
157 } 104 }
158 105
159 printf("\nTesting: mp_is_square\n"); 106 printf("\nTesting: mp_is_square\n");
160 for (i=0;i<100000;++i) { 107 for (i=0;i<1000;++i) {
161 printf("%6d\r", i); fflush(stdout); 108 printf("%6d\r", i); fflush(stdout);
162 109
163 /* test mp_is_square false negatives */ 110 /* test mp_is_square false negatives */
164 n = (rand()&7)+1; 111 n = (rand()&7)+1;
165 mp_rand(&a,n); 112 mp_rand(&a,n);
184 return 1; 131 return 1;
185 } 132 }
186 133
187 } 134 }
188 printf("\n\n"); 135 printf("\n\n");
189 #endif 136
190
191 #ifdef TESTING
192 /* test for size */ 137 /* test for size */
193 for (ix = 16; ix < 512; ix++) { 138 for (ix = 10; ix < 256; ix++) {
194 printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout); 139 printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout);
195 err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL); 140 err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL);
196 if (err != MP_OKAY) { 141 if (err != MP_OKAY) {
197 printf("failed with err code %d\n", err); 142 printf("failed with err code %d\n", err);
198 return EXIT_FAILURE; 143 return EXIT_FAILURE;
201 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); 146 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
202 return EXIT_FAILURE; 147 return EXIT_FAILURE;
203 } 148 }
204 } 149 }
205 150
206 for (ix = 16; ix < 512; ix++) { 151 for (ix = 16; ix < 256; ix++) {
207 printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout); 152 printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout);
208 err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL); 153 err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL);
209 if (err != MP_OKAY) { 154 if (err != MP_OKAY) {
210 printf("failed with err code %d\n", err); 155 printf("failed with err code %d\n", err);
211 return EXIT_FAILURE; 156 return EXIT_FAILURE;
223 return EXIT_FAILURE; 168 return EXIT_FAILURE;
224 } 169 }
225 } 170 }
226 171
227 printf("\n\n"); 172 printf("\n\n");
228 #endif 173
229
230 #ifdef TESTING
231 mp_read_radix(&a, "123456", 10); 174 mp_read_radix(&a, "123456", 10);
232 mp_toradix_n(&a, buf, 10, 3); 175 mp_toradix_n(&a, buf, 10, 3);
233 printf("a == %s\n", buf); 176 printf("a == %s\n", buf);
234 mp_toradix_n(&a, buf, 10, 4); 177 mp_toradix_n(&a, buf, 10, 4);
235 printf("a == %s\n", buf); 178 printf("a == %s\n", buf);
236 mp_toradix_n(&a, buf, 10, 30); 179 mp_toradix_n(&a, buf, 10, 30);
237 printf("a == %s\n", buf); 180 printf("a == %s\n", buf);
238 #endif
239 181
240 182
241 #if 0 183 #if 0
242 for (;;) { 184 for (;;) {
243 fgets(buf, sizeof(buf), stdin); 185 fgets(buf, sizeof(buf), stdin);
246 mp_toradix(&a, buf, 10); 188 mp_toradix(&a, buf, 10);
247 printf("%s, %lu\n", buf, a.dp[0] & 3); 189 printf("%s, %lu\n", buf, a.dp[0] & 3);
248 } 190 }
249 #endif 191 #endif
250 192
251 #if 0
252 {
253 mp_word aa, bb;
254
255 for (;;) {
256 aa = abs(rand()) & MP_MASK;
257 bb = abs(rand()) & MP_MASK;
258 if (MULT(aa,bb) != (aa*bb)) {
259 printf("%llu * %llu == %llu or %llu?\n", aa, bb, (ulong64)MULT(aa,bb), (ulong64)(aa*bb));
260 return 0;
261 }
262 }
263 }
264 #endif
265
266 #ifdef TESTING
267 /* test mp_cnt_lsb */ 193 /* test mp_cnt_lsb */
268 printf("testing mp_cnt_lsb...\n"); 194 printf("testing mp_cnt_lsb...\n");
269 mp_set(&a, 1); 195 mp_set(&a, 1);
270 for (ix = 0; ix < 1024; ix++) { 196 for (ix = 0; ix < 1024; ix++) {
271 if (mp_cnt_lsb(&a) != ix) { 197 if (mp_cnt_lsb(&a) != ix) {
272 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); 198 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
273 return 0; 199 return 0;
274 } 200 }
275 mp_mul_2(&a, &a); 201 mp_mul_2(&a, &a);
276 } 202 }
277 #endif
278 203
279 /* test mp_reduce_2k */ 204 /* test mp_reduce_2k */
280 #ifdef TESTING
281 printf("Testing mp_reduce_2k...\n"); 205 printf("Testing mp_reduce_2k...\n");
282 for (cnt = 3; cnt <= 384; ++cnt) { 206 for (cnt = 3; cnt <= 128; ++cnt) {
283 mp_digit tmp; 207 mp_digit tmp;
284 mp_2expt(&a, cnt); 208 mp_2expt(&a, cnt);
285 mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ 209 mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */
286 210
287 211
288 printf("\nTesting %4d bits", cnt); 212 printf("\nTesting %4d bits", cnt);
289 printf("(%d)", mp_reduce_is_2k(&a)); 213 printf("(%d)", mp_reduce_is_2k(&a));
290 mp_reduce_2k_setup(&a, &tmp); 214 mp_reduce_2k_setup(&a, &tmp);
291 printf("(%d)", tmp); 215 printf("(%d)", tmp);
292 for (ix = 0; ix < 10000; ix++) { 216 for (ix = 0; ix < 1000; ix++) {
293 if (!(ix & 127)) {printf("."); fflush(stdout); } 217 if (!(ix & 127)) {printf("."); fflush(stdout); }
294 mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2); 218 mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2);
295 mp_copy(&c, &b); 219 mp_copy(&c, &b);
296 mp_mod(&c, &a, &c); 220 mp_mod(&c, &a, &c);
297 mp_reduce_2k(&b, &a, 1); 221 mp_reduce_2k(&b, &a, 1);
299 printf("FAILED\n"); 223 printf("FAILED\n");
300 exit(0); 224 exit(0);
301 } 225 }
302 } 226 }
303 } 227 }
304 #endif
305
306 228
307 /* test mp_div_3 */ 229 /* test mp_div_3 */
308 #ifdef TESTING
309 printf("Testing mp_div_3...\n"); 230 printf("Testing mp_div_3...\n");
310 mp_set(&d, 3); 231 mp_set(&d, 3);
311 for (cnt = 0; cnt < 1000000; ) { 232 for (cnt = 0; cnt < 10000; ) {
312 mp_digit r1, r2; 233 mp_digit r1, r2;
313 234
314 if (!(++cnt & 127)) printf("%9d\r", cnt); 235 if (!(++cnt & 127)) printf("%9d\r", cnt);
315 mp_rand(&a, abs(rand()) % 128 + 1); 236 mp_rand(&a, abs(rand()) % 128 + 1);
316 mp_div(&a, &d, &b, &e); 237 mp_div(&a, &d, &b, &e);
319 if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { 240 if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
320 printf("\n\nmp_div_3 => Failure\n"); 241 printf("\n\nmp_div_3 => Failure\n");
321 } 242 }
322 } 243 }
323 printf("\n\nPassed div_3 testing\n"); 244 printf("\n\nPassed div_3 testing\n");
324 #endif
325 245
326 /* test the DR reduction */ 246 /* test the DR reduction */
327 #ifdef TESTING
328 printf("testing mp_dr_reduce...\n"); 247 printf("testing mp_dr_reduce...\n");
329 for (cnt = 2; cnt < 128; cnt++) { 248 for (cnt = 2; cnt < 32; cnt++) {
330 printf("%d digit modulus\n", cnt); 249 printf("%d digit modulus\n", cnt);
331 mp_grow(&a, cnt); 250 mp_grow(&a, cnt);
332 mp_zero(&a); 251 mp_zero(&a);
333 for (ix = 1; ix < cnt; ix++) { 252 for (ix = 1; ix < cnt; ix++) {
334 a.dp[ix] = MP_MASK; 253 a.dp[ix] = MP_MASK;
335 } 254 }
336 a.used = cnt; 255 a.used = cnt;
337 mp_prime_next_prime(&a, 3, 0); 256 a.dp[0] = 3;
338 257
339 mp_rand(&b, cnt - 1); 258 mp_rand(&b, cnt - 1);
340 mp_copy(&b, &c); 259 mp_copy(&b, &c);
341 260
342 rr = 0; 261 rr = 0;
344 if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); } 263 if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); }
345 mp_sqr(&b, &b); mp_add_d(&b, 1, &b); 264 mp_sqr(&b, &b); mp_add_d(&b, 1, &b);
346 mp_copy(&b, &c); 265 mp_copy(&b, &c);
347 266
348 mp_mod(&b, &a, &b); 267 mp_mod(&b, &a, &b);
349 mp_dr_reduce(&c, &a, (1<<DIGIT_BIT)-a.dp[0]); 268 mp_dr_reduce(&c, &a, (((mp_digit)1)<<DIGIT_BIT)-a.dp[0]);
350 269
351 if (mp_cmp(&b, &c) != MP_EQ) { 270 if (mp_cmp(&b, &c) != MP_EQ) {
352 printf("Failed on trial %lu\n", rr); exit(-1); 271 printf("Failed on trial %lu\n", rr); exit(-1);
353 272
354 } 273 }
355 } while (++rr < 100000); 274 } while (++rr < 500);
356 printf("Passed DR test for %d digits\n", cnt); 275 printf("Passed DR test for %d digits\n", cnt);
357 } 276 }
358 #endif
359
360 #ifdef TIMER
361 /* temp. turn off TOOM */
362 TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
363
364 reset();
365 sleep(1);
366 CLK_PER_SEC = rdtsc();
367
368 printf("CLK_PER_SEC == %lu\n", CLK_PER_SEC);
369
370
371 log = fopen("logs/add.log", "w");
372 for (cnt = 8; cnt <= 128; cnt += 8) {
373 SLEEP;
374 mp_rand(&a, cnt);
375 mp_rand(&b, cnt);
376 reset();
377 rr = 0;
378 do {
379 DO(mp_add(&a,&b,&c));
380 rr += 16;
381 } while (rdtsc() < (CLK_PER_SEC * 2));
382 tt = rdtsc();
383 printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
384 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
385 }
386 fclose(log);
387
388 log = fopen("logs/sub.log", "w");
389 for (cnt = 8; cnt <= 128; cnt += 8) {
390 SLEEP;
391 mp_rand(&a, cnt);
392 mp_rand(&b, cnt);
393 reset();
394 rr = 0;
395 do {
396 DO(mp_sub(&a,&b,&c));
397 rr += 16;
398 } while (rdtsc() < (CLK_PER_SEC * 2));
399 tt = rdtsc();
400 printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
401 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
402 }
403 fclose(log);
404
405 /* do mult/square twice, first without karatsuba and second with */
406 mult_test:
407 old_kara_m = KARATSUBA_MUL_CUTOFF;
408 old_kara_s = KARATSUBA_SQR_CUTOFF;
409 for (ix = 0; ix < 2; ix++) {
410 printf("With%s Karatsuba\n", (ix==0)?"out":"");
411
412 KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m;
413 KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
414
415 log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
416 for (cnt = 32; cnt <= 288; cnt += 8) {
417 SLEEP;
418 mp_rand(&a, cnt);
419 mp_rand(&b, cnt);
420 reset();
421 rr = 0;
422 do {
423 DO(mp_mul(&a, &b, &c));
424 rr += 16;
425 } while (rdtsc() < (CLK_PER_SEC * 2));
426 tt = rdtsc();
427 printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
428 fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
429 }
430 fclose(log);
431
432 log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
433 for (cnt = 32; cnt <= 288; cnt += 8) {
434 SLEEP;
435 mp_rand(&a, cnt);
436 reset();
437 rr = 0;
438 do {
439 DO(mp_sqr(&a, &b));
440 rr += 16;
441 } while (rdtsc() < (CLK_PER_SEC * 2));
442 tt = rdtsc();
443 printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
444 fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
445 }
446 fclose(log);
447
448 }
449 expt_test:
450 {
451 char *primes[] = {
452 /* 2K moduli mersenne primes */
453 "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
454 "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
455 "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
456 "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
457 "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
458 "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
459
460 /* DR moduli */
461 "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
462 "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
463 "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
464 "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
465 "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
466 "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
467 "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
468
469 /* generic unrestricted moduli */
470 "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
471 "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
472 "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
473 "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
474 "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
475 "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
476 "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
477 NULL
478 };
479 log = fopen("logs/expt.log", "w");
480 logb = fopen("logs/expt_dr.log", "w");
481 logc = fopen("logs/expt_2k.log", "w");
482 for (n = 0; primes[n]; n++) {
483 SLEEP;
484 mp_read_radix(&a, primes[n], 10);
485 mp_zero(&b);
486 for (rr = 0; rr < mp_count_bits(&a); rr++) {
487 mp_mul_2(&b, &b);
488 b.dp[0] |= lbit();
489 b.used += 1;
490 }
491 mp_sub_d(&a, 1, &c);
492 mp_mod(&b, &c, &b);
493 mp_set(&c, 3);
494 reset();
495 rr = 0;
496 do {
497 DO(mp_exptmod(&c, &b, &a, &d));
498 rr += 16;
499 } while (rdtsc() < (CLK_PER_SEC * 2));
500 tt = rdtsc();
501 mp_sub_d(&a, 1, &e);
502 mp_sub(&e, &b, &b);
503 mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
504 mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
505 if (mp_cmp_d(&d, 1)) {
506 printf("Different (%d)!!!\n", mp_count_bits(&a));
507 draw(&d);
508 exit(0);
509 }
510 printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
511 fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt);
512 }
513 }
514 fclose(log);
515 fclose(logb);
516 fclose(logc);
517
518 log = fopen("logs/invmod.log", "w");
519 for (cnt = 4; cnt <= 128; cnt += 4) {
520 SLEEP;
521 mp_rand(&a, cnt);
522 mp_rand(&b, cnt);
523
524 do {
525 mp_add_d(&b, 1, &b);
526 mp_gcd(&a, &b, &c);
527 } while (mp_cmp_d(&c, 1) != MP_EQ);
528
529 reset();
530 rr = 0;
531 do {
532 DO(mp_invmod(&b, &a, &c));
533 rr += 16;
534 } while (rdtsc() < (CLK_PER_SEC * 2));
535 tt = rdtsc();
536 mp_mulmod(&b, &c, &a, &d);
537 if (mp_cmp_d(&d, 1) != MP_EQ) {
538 printf("Failed to invert\n");
539 return 0;
540 }
541 printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
542 fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt);
543 }
544 fclose(log);
545
546 return 0;
547 277
548 #endif 278 #endif
549 279
550 div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = 280 div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
551 sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0; 281 sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0;