Mercurial > dropbear
comparison libtommath/bn_mp_root_u32.c @ 1733:d529a52b2f7c coverity coverity
merge coverity from main
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 26 Jun 2020 21:07:34 +0800 |
parents | 1051e4eea25a |
children |
comparison
equal
deleted
inserted
replaced
1643:b59623a64678 | 1733:d529a52b2f7c |
---|---|
1 #include "tommath_private.h" | |
2 #ifdef BN_MP_ROOT_U32_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis */ | |
4 /* SPDX-License-Identifier: Unlicense */ | |
5 | |
6 /* find the n'th root of an integer | |
7 * | |
8 * Result found such that (c)**b <= a and (c+1)**b > a | |
9 * | |
10 * This algorithm uses Newton's approximation | |
11 * x[i+1] = x[i] - f(x[i])/f'(x[i]) | |
12 * which will find the root in log(N) time where | |
13 * each step involves a fair bit. | |
14 */ | |
15 mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c) | |
16 { | |
17 mp_int t1, t2, t3, a_; | |
18 mp_ord cmp; | |
19 int ilog2; | |
20 mp_err err; | |
21 | |
22 /* input must be positive if b is even */ | |
23 if (((b & 1u) == 0u) && (a->sign == MP_NEG)) { | |
24 return MP_VAL; | |
25 } | |
26 | |
27 if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) { | |
28 return err; | |
29 } | |
30 | |
31 /* if a is negative fudge the sign but keep track */ | |
32 a_ = *a; | |
33 a_.sign = MP_ZPOS; | |
34 | |
35 /* Compute seed: 2^(log_2(n)/b + 2)*/ | |
36 ilog2 = mp_count_bits(a); | |
37 | |
38 /* | |
39 If "b" is larger than INT_MAX it is also larger than | |
40 log_2(n) because the bit-length of the "n" is measured | |
41 with an int and hence the root is always < 2 (two). | |
42 */ | |
43 if (b > (uint32_t)(INT_MAX/2)) { | |
44 mp_set(c, 1uL); | |
45 c->sign = a->sign; | |
46 err = MP_OKAY; | |
47 goto LBL_ERR; | |
48 } | |
49 | |
50 /* "b" is smaller than INT_MAX, we can cast safely */ | |
51 if (ilog2 < (int)b) { | |
52 mp_set(c, 1uL); | |
53 c->sign = a->sign; | |
54 err = MP_OKAY; | |
55 goto LBL_ERR; | |
56 } | |
57 ilog2 = ilog2 / ((int)b); | |
58 if (ilog2 == 0) { | |
59 mp_set(c, 1uL); | |
60 c->sign = a->sign; | |
61 err = MP_OKAY; | |
62 goto LBL_ERR; | |
63 } | |
64 /* Start value must be larger than root */ | |
65 ilog2 += 2; | |
66 if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) goto LBL_ERR; | |
67 do { | |
68 /* t1 = t2 */ | |
69 if ((err = mp_copy(&t2, &t1)) != MP_OKAY) goto LBL_ERR; | |
70 | |
71 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ | |
72 | |
73 /* t3 = t1**(b-1) */ | |
74 if ((err = mp_expt_u32(&t1, b - 1u, &t3)) != MP_OKAY) goto LBL_ERR; | |
75 | |
76 /* numerator */ | |
77 /* t2 = t1**b */ | |
78 if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) goto LBL_ERR; | |
79 | |
80 /* t2 = t1**b - a */ | |
81 if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) goto LBL_ERR; | |
82 | |
83 /* denominator */ | |
84 /* t3 = t1**(b-1) * b */ | |
85 if ((err = mp_mul_d(&t3, b, &t3)) != MP_OKAY) goto LBL_ERR; | |
86 | |
87 /* t3 = (t1**b - a)/(b * t1**(b-1)) */ | |
88 if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) goto LBL_ERR; | |
89 | |
90 if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) goto LBL_ERR; | |
91 | |
92 /* | |
93 Number of rounds is at most log_2(root). If it is more it | |
94 got stuck, so break out of the loop and do the rest manually. | |
95 */ | |
96 if (ilog2-- == 0) { | |
97 break; | |
98 } | |
99 } while (mp_cmp(&t1, &t2) != MP_EQ); | |
100 | |
101 /* result can be off by a few so check */ | |
102 /* Loop beneath can overshoot by one if found root is smaller than actual root */ | |
103 for (;;) { | |
104 if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR; | |
105 cmp = mp_cmp(&t2, &a_); | |
106 if (cmp == MP_EQ) { | |
107 err = MP_OKAY; | |
108 goto LBL_ERR; | |
109 } | |
110 if (cmp == MP_LT) { | |
111 if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR; | |
112 } else { | |
113 break; | |
114 } | |
115 } | |
116 /* correct overshoot from above or from recurrence */ | |
117 for (;;) { | |
118 if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR; | |
119 if (mp_cmp(&t2, &a_) == MP_GT) { | |
120 if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR; | |
121 } else { | |
122 break; | |
123 } | |
124 } | |
125 | |
126 /* set the result */ | |
127 mp_exch(&t1, c); | |
128 | |
129 /* set the sign of the result */ | |
130 c->sign = a->sign; | |
131 | |
132 err = MP_OKAY; | |
133 | |
134 LBL_ERR: | |
135 mp_clear_multi(&t1, &t2, &t3, NULL); | |
136 return err; | |
137 } | |
138 | |
139 #endif |