Mercurial > dropbear
comparison libtommath/bn_s_mp_toom_mul.c @ 1733:d529a52b2f7c coverity coverity
merge coverity from main
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 26 Jun 2020 21:07:34 +0800 |
parents | 1051e4eea25a |
children |
comparison
equal
deleted
inserted
replaced
1643:b59623a64678 | 1733:d529a52b2f7c |
---|---|
1 #include "tommath_private.h" | |
2 #ifdef BN_S_MP_TOOM_MUL_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis */ | |
4 /* SPDX-License-Identifier: Unlicense */ | |
5 | |
6 /* multiplication using the Toom-Cook 3-way algorithm | |
7 * | |
8 * Much more complicated than Karatsuba but has a lower | |
9 * asymptotic running time of O(N**1.464). This algorithm is | |
10 * only particularly useful on VERY large inputs | |
11 * (we're talking 1000s of digits here...). | |
12 */ | |
13 | |
14 /* | |
15 This file contains code from J. Arndt's book "Matters Computational" | |
16 and the accompanying FXT-library with permission of the author. | |
17 */ | |
18 | |
19 /* | |
20 Setup from | |
21 | |
22 Chung, Jaewook, and M. Anwar Hasan. "Asymmetric squaring formulae." | |
23 18th IEEE Symposium on Computer Arithmetic (ARITH'07). IEEE, 2007. | |
24 | |
25 The interpolation from above needed one temporary variable more | |
26 than the interpolation here: | |
27 | |
28 Bodrato, Marco, and Alberto Zanoni. "What about Toom-Cook matrices optimality." | |
29 Centro Vito Volterra Universita di Roma Tor Vergata (2006) | |
30 */ | |
31 | |
32 mp_err s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c) | |
33 { | |
34 mp_int S1, S2, T1, a0, a1, a2, b0, b1, b2; | |
35 int B, count; | |
36 mp_err err; | |
37 | |
38 /* init temps */ | |
39 if ((err = mp_init_multi(&S1, &S2, &T1, NULL)) != MP_OKAY) { | |
40 return err; | |
41 } | |
42 | |
43 /* B */ | |
44 B = MP_MIN(a->used, b->used) / 3; | |
45 | |
46 /** a = a2 * x^2 + a1 * x + a0; */ | |
47 if ((err = mp_init_size(&a0, B)) != MP_OKAY) goto LBL_ERRa0; | |
48 | |
49 for (count = 0; count < B; count++) { | |
50 a0.dp[count] = a->dp[count]; | |
51 a0.used++; | |
52 } | |
53 mp_clamp(&a0); | |
54 if ((err = mp_init_size(&a1, B)) != MP_OKAY) goto LBL_ERRa1; | |
55 for (; count < (2 * B); count++) { | |
56 a1.dp[count - B] = a->dp[count]; | |
57 a1.used++; | |
58 } | |
59 mp_clamp(&a1); | |
60 if ((err = mp_init_size(&a2, B + (a->used - (3 * B)))) != MP_OKAY) goto LBL_ERRa2; | |
61 for (; count < a->used; count++) { | |
62 a2.dp[count - (2 * B)] = a->dp[count]; | |
63 a2.used++; | |
64 } | |
65 mp_clamp(&a2); | |
66 | |
67 /** b = b2 * x^2 + b1 * x + b0; */ | |
68 if ((err = mp_init_size(&b0, B)) != MP_OKAY) goto LBL_ERRb0; | |
69 for (count = 0; count < B; count++) { | |
70 b0.dp[count] = b->dp[count]; | |
71 b0.used++; | |
72 } | |
73 mp_clamp(&b0); | |
74 if ((err = mp_init_size(&b1, B)) != MP_OKAY) goto LBL_ERRb1; | |
75 for (; count < (2 * B); count++) { | |
76 b1.dp[count - B] = b->dp[count]; | |
77 b1.used++; | |
78 } | |
79 mp_clamp(&b1); | |
80 if ((err = mp_init_size(&b2, B + (b->used - (3 * B)))) != MP_OKAY) goto LBL_ERRb2; | |
81 for (; count < b->used; count++) { | |
82 b2.dp[count - (2 * B)] = b->dp[count]; | |
83 b2.used++; | |
84 } | |
85 mp_clamp(&b2); | |
86 | |
87 /** \\ S1 = (a2+a1+a0) * (b2+b1+b0); */ | |
88 /** T1 = a2 + a1; */ | |
89 if ((err = mp_add(&a2, &a1, &T1)) != MP_OKAY) goto LBL_ERR; | |
90 | |
91 /** S2 = T1 + a0; */ | |
92 if ((err = mp_add(&T1, &a0, &S2)) != MP_OKAY) goto LBL_ERR; | |
93 | |
94 /** c = b2 + b1; */ | |
95 if ((err = mp_add(&b2, &b1, c)) != MP_OKAY) goto LBL_ERR; | |
96 | |
97 /** S1 = c + b0; */ | |
98 if ((err = mp_add(c, &b0, &S1)) != MP_OKAY) goto LBL_ERR; | |
99 | |
100 /** S1 = S1 * S2; */ | |
101 if ((err = mp_mul(&S1, &S2, &S1)) != MP_OKAY) goto LBL_ERR; | |
102 | |
103 /** \\S2 = (4*a2+2*a1+a0) * (4*b2+2*b1+b0); */ | |
104 /** T1 = T1 + a2; */ | |
105 if ((err = mp_add(&T1, &a2, &T1)) != MP_OKAY) goto LBL_ERR; | |
106 | |
107 /** T1 = T1 << 1; */ | |
108 if ((err = mp_mul_2(&T1, &T1)) != MP_OKAY) goto LBL_ERR; | |
109 | |
110 /** T1 = T1 + a0; */ | |
111 if ((err = mp_add(&T1, &a0, &T1)) != MP_OKAY) goto LBL_ERR; | |
112 | |
113 /** c = c + b2; */ | |
114 if ((err = mp_add(c, &b2, c)) != MP_OKAY) goto LBL_ERR; | |
115 | |
116 /** c = c << 1; */ | |
117 if ((err = mp_mul_2(c, c)) != MP_OKAY) goto LBL_ERR; | |
118 | |
119 /** c = c + b0; */ | |
120 if ((err = mp_add(c, &b0, c)) != MP_OKAY) goto LBL_ERR; | |
121 | |
122 /** S2 = T1 * c; */ | |
123 if ((err = mp_mul(&T1, c, &S2)) != MP_OKAY) goto LBL_ERR; | |
124 | |
125 /** \\S3 = (a2-a1+a0) * (b2-b1+b0); */ | |
126 /** a1 = a2 - a1; */ | |
127 if ((err = mp_sub(&a2, &a1, &a1)) != MP_OKAY) goto LBL_ERR; | |
128 | |
129 /** a1 = a1 + a0; */ | |
130 if ((err = mp_add(&a1, &a0, &a1)) != MP_OKAY) goto LBL_ERR; | |
131 | |
132 /** b1 = b2 - b1; */ | |
133 if ((err = mp_sub(&b2, &b1, &b1)) != MP_OKAY) goto LBL_ERR; | |
134 | |
135 /** b1 = b1 + b0; */ | |
136 if ((err = mp_add(&b1, &b0, &b1)) != MP_OKAY) goto LBL_ERR; | |
137 | |
138 /** a1 = a1 * b1; */ | |
139 if ((err = mp_mul(&a1, &b1, &a1)) != MP_OKAY) goto LBL_ERR; | |
140 | |
141 /** b1 = a2 * b2; */ | |
142 if ((err = mp_mul(&a2, &b2, &b1)) != MP_OKAY) goto LBL_ERR; | |
143 | |
144 /** \\S2 = (S2 - S3)/3; */ | |
145 /** S2 = S2 - a1; */ | |
146 if ((err = mp_sub(&S2, &a1, &S2)) != MP_OKAY) goto LBL_ERR; | |
147 | |
148 /** S2 = S2 / 3; \\ this is an exact division */ | |
149 if ((err = mp_div_3(&S2, &S2, NULL)) != MP_OKAY) goto LBL_ERR; | |
150 | |
151 /** a1 = S1 - a1; */ | |
152 if ((err = mp_sub(&S1, &a1, &a1)) != MP_OKAY) goto LBL_ERR; | |
153 | |
154 /** a1 = a1 >> 1; */ | |
155 if ((err = mp_div_2(&a1, &a1)) != MP_OKAY) goto LBL_ERR; | |
156 | |
157 /** a0 = a0 * b0; */ | |
158 if ((err = mp_mul(&a0, &b0, &a0)) != MP_OKAY) goto LBL_ERR; | |
159 | |
160 /** S1 = S1 - a0; */ | |
161 if ((err = mp_sub(&S1, &a0, &S1)) != MP_OKAY) goto LBL_ERR; | |
162 | |
163 /** S2 = S2 - S1; */ | |
164 if ((err = mp_sub(&S2, &S1, &S2)) != MP_OKAY) goto LBL_ERR; | |
165 | |
166 /** S2 = S2 >> 1; */ | |
167 if ((err = mp_div_2(&S2, &S2)) != MP_OKAY) goto LBL_ERR; | |
168 | |
169 /** S1 = S1 - a1; */ | |
170 if ((err = mp_sub(&S1, &a1, &S1)) != MP_OKAY) goto LBL_ERR; | |
171 | |
172 /** S1 = S1 - b1; */ | |
173 if ((err = mp_sub(&S1, &b1, &S1)) != MP_OKAY) goto LBL_ERR; | |
174 | |
175 /** T1 = b1 << 1; */ | |
176 if ((err = mp_mul_2(&b1, &T1)) != MP_OKAY) goto LBL_ERR; | |
177 | |
178 /** S2 = S2 - T1; */ | |
179 if ((err = mp_sub(&S2, &T1, &S2)) != MP_OKAY) goto LBL_ERR; | |
180 | |
181 /** a1 = a1 - S2; */ | |
182 if ((err = mp_sub(&a1, &S2, &a1)) != MP_OKAY) goto LBL_ERR; | |
183 | |
184 | |
185 /** P = b1*x^4+ S2*x^3+ S1*x^2+ a1*x + a0; */ | |
186 if ((err = mp_lshd(&b1, 4 * B)) != MP_OKAY) goto LBL_ERR; | |
187 if ((err = mp_lshd(&S2, 3 * B)) != MP_OKAY) goto LBL_ERR; | |
188 if ((err = mp_add(&b1, &S2, &b1)) != MP_OKAY) goto LBL_ERR; | |
189 if ((err = mp_lshd(&S1, 2 * B)) != MP_OKAY) goto LBL_ERR; | |
190 if ((err = mp_add(&b1, &S1, &b1)) != MP_OKAY) goto LBL_ERR; | |
191 if ((err = mp_lshd(&a1, 1 * B)) != MP_OKAY) goto LBL_ERR; | |
192 if ((err = mp_add(&b1, &a1, &b1)) != MP_OKAY) goto LBL_ERR; | |
193 if ((err = mp_add(&b1, &a0, c)) != MP_OKAY) goto LBL_ERR; | |
194 | |
195 /** a * b - P */ | |
196 | |
197 | |
198 LBL_ERR: | |
199 mp_clear(&b2); | |
200 LBL_ERRb2: | |
201 mp_clear(&b1); | |
202 LBL_ERRb1: | |
203 mp_clear(&b0); | |
204 LBL_ERRb0: | |
205 mp_clear(&a2); | |
206 LBL_ERRa2: | |
207 mp_clear(&a1); | |
208 LBL_ERRa1: | |
209 mp_clear(&a0); | |
210 LBL_ERRa0: | |
211 mp_clear_multi(&S1, &S2, &T1, NULL); | |
212 return err; | |
213 } | |
214 | |
215 #endif |