Mercurial > dropbear
comparison hmac_init.c @ 0:d7da3b1e1540 libtomcrypt
put back the 0.95 makefile which was inadvertently merged over
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:21:40 +0000 |
parents | |
children | 5d99163f7e32 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d7da3b1e1540 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 /* Submited by Dobes Vandermeer ([email protected]) */ | |
12 | |
13 #include "mycrypt.h" | |
14 | |
15 /* | |
16 (1) append zeros to the end of K to create a B byte string | |
17 (e.g., if K is of length 20 bytes and B=64, then K will be | |
18 appended with 44 zero bytes 0x00) | |
19 (2) XOR (bitwise exclusive-OR) the B byte string computed in step | |
20 (1) with ipad (ipad = the byte 0x36 repeated B times) | |
21 (3) append the stream of data 'text' to the B byte string resulting | |
22 from step (2) | |
23 (4) apply H to the stream generated in step (3) | |
24 (5) XOR (bitwise exclusive-OR) the B byte string computed in | |
25 step (1) with opad (opad = the byte 0x5C repeated B times.) | |
26 (6) append the H result from step (4) to the B byte string | |
27 resulting from step (5) | |
28 (7) apply H to the stream generated in step (6) and output | |
29 the result | |
30 */ | |
31 | |
32 #ifdef HMAC | |
33 | |
34 #define HMAC_BLOCKSIZE hash_descriptor[hash].blocksize | |
35 | |
36 int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen) | |
37 { | |
38 unsigned char buf[MAXBLOCKSIZE]; | |
39 unsigned long hashsize; | |
40 unsigned long i, z; | |
41 int err; | |
42 | |
43 _ARGCHK(hmac != NULL); | |
44 _ARGCHK(key != NULL); | |
45 | |
46 if ((err = hash_is_valid(hash)) != CRYPT_OK) { | |
47 return err; | |
48 } | |
49 | |
50 /* valid key length? */ | |
51 if (keylen == 0) { | |
52 return CRYPT_INVALID_KEYSIZE; | |
53 } | |
54 | |
55 hmac->hash = hash; | |
56 | |
57 // (1) make sure we have a large enough key | |
58 hashsize = hash_descriptor[hash].hashsize; | |
59 if(keylen > HMAC_BLOCKSIZE) { | |
60 z = (unsigned long)sizeof(hmac->key); | |
61 if ((err = hash_memory(hash, key, keylen, hmac->key, &z)) != CRYPT_OK) { | |
62 return err; | |
63 } | |
64 if(hashsize < HMAC_BLOCKSIZE) { | |
65 zeromem((hmac->key) + hashsize, (size_t)(HMAC_BLOCKSIZE - hashsize)); | |
66 } | |
67 keylen = hashsize; | |
68 } else { | |
69 memcpy(hmac->key, key, (size_t)keylen); | |
70 if(keylen < HMAC_BLOCKSIZE) { | |
71 zeromem((hmac->key) + keylen, (size_t)(HMAC_BLOCKSIZE - keylen)); | |
72 } | |
73 } | |
74 | |
75 // Create the initial vector for step (3) | |
76 for(i=0; i < HMAC_BLOCKSIZE; i++) { | |
77 buf[i] = hmac->key[i] ^ 0x36; | |
78 } | |
79 | |
80 // Pre-pend that to the hash data | |
81 hash_descriptor[hash].init(&hmac->md); | |
82 hash_descriptor[hash].process(&hmac->md, buf, HMAC_BLOCKSIZE); | |
83 | |
84 return CRYPT_OK; | |
85 } | |
86 | |
87 #endif |