comparison noekeon.c @ 0:d7da3b1e1540 libtomcrypt

put back the 0.95 makefile which was inadvertently merged over
author Matt Johnston <matt@ucc.asn.au>
date Mon, 31 May 2004 18:21:40 +0000
parents
children 5d99163f7e32
comparison
equal deleted inserted replaced
-1:000000000000 0:d7da3b1e1540
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11 /* Implementation of the Noekeon block cipher by Tom St Denis */
12 #include "mycrypt.h"
13
14 #ifdef NOEKEON
15
16 const struct _cipher_descriptor noekeon_desc =
17 {
18 "noekeon",
19 16,
20 16, 16, 16, 16,
21 &noekeon_setup,
22 &noekeon_ecb_encrypt,
23 &noekeon_ecb_decrypt,
24 &noekeon_test,
25 &noekeon_keysize
26 };
27
28 static const ulong32 RC[] = {
29 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
30 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
31 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
32 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
33 0x000000d4UL
34 };
35
36
37 #define kTHETA(a, b, c, d) \
38 temp = a^c; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
39 b ^= temp; d ^= temp; \
40 temp = b^d; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
41 a ^= temp; c ^= temp;
42
43 #define THETA(k, a, b, c, d) \
44 temp = a^c; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
45 b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
46 temp = b^d; temp = temp ^ ROL(temp, 8) ^ ROR(temp, 8); \
47 a ^= temp ^ k[0]; c ^= temp ^ k[2];
48
49 #define GAMMA(a, b, c, d) \
50 b ^= ~(d|c); \
51 a ^= c&b; \
52 temp = d; d = a; a = temp;\
53 c ^= a ^ b ^ d; \
54 b ^= ~(d|c); \
55 a ^= c&b;
56
57 #define PI1(a, b, c, d) \
58 a = ROL(a, 1); c = ROL(c, 5); d = ROL(d, 2);
59
60 #define PI2(a, b, c, d) \
61 a = ROR(a, 1); c = ROR(c, 5); d = ROR(d, 2);
62
63 int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
64 {
65 ulong32 temp;
66
67 _ARGCHK(key != NULL);
68 _ARGCHK(skey != NULL);
69
70 if (keylen != 16) {
71 return CRYPT_INVALID_KEYSIZE;
72 }
73
74 if (num_rounds != 16 && num_rounds != 0) {
75 return CRYPT_INVALID_ROUNDS;
76 }
77
78 LOAD32H(skey->noekeon.K[0],&key[0]);
79 LOAD32H(skey->noekeon.K[1],&key[4]);
80 LOAD32H(skey->noekeon.K[2],&key[8]);
81 LOAD32H(skey->noekeon.K[3],&key[12]);
82
83 LOAD32H(skey->noekeon.dK[0],&key[0]);
84 LOAD32H(skey->noekeon.dK[1],&key[4]);
85 LOAD32H(skey->noekeon.dK[2],&key[8]);
86 LOAD32H(skey->noekeon.dK[3],&key[12]);
87
88 kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
89
90 return CRYPT_OK;
91 }
92
93 #ifdef CLEAN_STACK
94 static void _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
95 #else
96 void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
97 #endif
98 {
99 ulong32 a,b,c,d,temp;
100 #ifdef SMALL_CODE
101 int r;
102 #endif
103
104 _ARGCHK(key != NULL);
105 _ARGCHK(pt != NULL);
106 _ARGCHK(ct != NULL);
107
108 LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
109 LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
110
111 #define ROUND(i) \
112 a ^= RC[i]; \
113 THETA(key->noekeon.K, a,b,c,d); \
114 PI1(a,b,c,d); \
115 GAMMA(a,b,c,d); \
116 PI2(a,b,c,d);
117
118 #ifdef SMALL_CODE
119 for (r = 0; r < 16; ++r) {
120 ROUND(r);
121 }
122 #else
123 ROUND( 0); ROUND( 1); ROUND( 2); ROUND( 3);
124 ROUND( 4); ROUND( 5); ROUND( 6); ROUND( 7);
125 ROUND( 8); ROUND( 9); ROUND(10); ROUND(11);
126 ROUND(12); ROUND(13); ROUND(14); ROUND(15);
127 #endif
128
129 #undef ROUND
130
131 a ^= RC[16];
132 THETA(key->noekeon.K, a, b, c, d);
133
134 STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
135 STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
136 }
137
138 #ifdef CLEAN_STACK
139 void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
140 {
141 _noekeon_ecb_encrypt(pt, ct, key);
142 burn_stack(sizeof(ulong32) * 5 + sizeof(int));
143 }
144 #endif
145
146 #ifdef CLEAN_STACK
147 static void _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
148 #else
149 void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
150 #endif
151 {
152 ulong32 a,b,c,d, temp;
153 #ifdef SMALL_CODE
154 int r;
155 #endif
156
157 _ARGCHK(key != NULL);
158 _ARGCHK(pt != NULL);
159 _ARGCHK(ct != NULL);
160
161 LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
162 LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
163
164
165 #define ROUND(i) \
166 THETA(key->noekeon.dK, a,b,c,d); \
167 a ^= RC[i]; \
168 PI1(a,b,c,d); \
169 GAMMA(a,b,c,d); \
170 PI2(a,b,c,d);
171
172 #ifdef SMALL_CODE
173 for (r = 16; r > 0; --r) {
174 ROUND(r);
175 }
176 #else
177 ROUND(16); ROUND(15); ROUND(14); ROUND(13);
178 ROUND(12); ROUND(11); ROUND(10); ROUND( 9);
179 ROUND( 8); ROUND( 7); ROUND( 6); ROUND( 5);
180 ROUND( 4); ROUND( 3); ROUND( 2); ROUND( 1);
181 #endif
182
183 #undef ROUND
184
185 THETA(key->noekeon.dK, a,b,c,d);
186 a ^= RC[0];
187 STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
188 STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
189 }
190
191 #ifdef CLEAN_STACK
192 void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
193 {
194 _noekeon_ecb_decrypt(ct, pt, key);
195 burn_stack(sizeof(ulong32) * 5 + sizeof(int));
196 }
197 #endif
198
199 int noekeon_test(void)
200 {
201 #ifndef LTC_TEST
202 return CRYPT_NOP;
203 #else
204 static const struct {
205 int keylen;
206 unsigned char key[16], pt[16], ct[16];
207 } tests[] = {
208 {
209 16,
210 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
211 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
212 { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73,
213 0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5}
214 }
215 };
216 symmetric_key key;
217 unsigned char tmp[2][16];
218 int err, i, y;
219
220 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
221 zeromem(&key, sizeof(key));
222 if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
223 return err;
224 }
225
226 noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
227 noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
228 if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
229 #if 0
230 printf("\n\nTest %d failed\n", i);
231 if (memcmp(tmp[0], tests[i].ct, 16)) {
232 printf("CT: ");
233 for (i = 0; i < 16; i++) {
234 printf("%02x ", tmp[0][i]);
235 }
236 printf("\n");
237 } else {
238 printf("PT: ");
239 for (i = 0; i < 16; i++) {
240 printf("%02x ", tmp[1][i]);
241 }
242 printf("\n");
243 }
244 #endif
245 return CRYPT_FAIL_TESTVECTOR;
246 }
247
248 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
249 for (y = 0; y < 16; y++) tmp[0][y] = 0;
250 for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
251 for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
252 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
253 }
254 return CRYPT_OK;
255 #endif
256 }
257
258 int noekeon_keysize(int *desired_keysize)
259 {
260 _ARGCHK(desired_keysize != NULL);
261 if (*desired_keysize < 16) {
262 return CRYPT_INVALID_KEYSIZE;
263 } else {
264 *desired_keysize = 16;
265 return CRYPT_OK;
266 }
267 }
268
269 #endif
270