comparison rc5.c @ 0:d7da3b1e1540 libtomcrypt

put back the 0.95 makefile which was inadvertently merged over
author Matt Johnston <matt@ucc.asn.au>
date Mon, 31 May 2004 18:21:40 +0000
parents
children 5d99163f7e32
comparison
equal deleted inserted replaced
-1:000000000000 0:d7da3b1e1540
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11
12 /* RC5 code by Tom St Denis */
13
14 #include "mycrypt.h"
15
16 #ifdef RC5
17
18 const struct _cipher_descriptor rc5_desc =
19 {
20 "rc5",
21 2,
22 8, 128, 8, 12,
23 &rc5_setup,
24 &rc5_ecb_encrypt,
25 &rc5_ecb_decrypt,
26 &rc5_test,
27 &rc5_keysize
28 };
29
30 static const ulong32 stab[50] = {
31 0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
32 0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
33 0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
34 0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
35 0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
36 0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL, 0xe96a3d2fUL, 0x87a1b6e8UL, 0x25d930a1UL, 0xc410aa5aUL,
37 0x62482413UL, 0x007f9dccUL
38 };
39
40 #ifdef CLEAN_STACK
41 static int _rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
42 #else
43 int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
44 #endif
45 {
46 ulong32 L[64], *S, A, B, i, j, v, s, t, l;
47
48 _ARGCHK(skey != NULL);
49 _ARGCHK(key != NULL);
50
51 /* test parameters */
52 if (num_rounds == 0) {
53 num_rounds = rc5_desc.default_rounds;
54 }
55
56 if (num_rounds < 12 || num_rounds > 24) {
57 return CRYPT_INVALID_ROUNDS;
58 }
59
60 /* key must be between 64 and 1024 bits */
61 if (keylen < 8 || keylen > 128) {
62 return CRYPT_INVALID_KEYSIZE;
63 }
64
65 skey->rc5.rounds = num_rounds;
66 S = skey->rc5.K;
67
68 /* copy the key into the L array */
69 for (A = i = j = 0; i < (ulong32)keylen; ) {
70 A = (A << 8) | ((ulong32)(key[i++] & 255));
71 if ((i & 3) == 0) {
72 L[j++] = BSWAP(A);
73 A = 0;
74 }
75 }
76
77 if ((keylen & 3) != 0) {
78 A <<= (ulong32)((8 * (4 - (keylen&3))));
79 L[j++] = BSWAP(A);
80 }
81
82 /* setup the S array */
83 t = (ulong32)(2 * (num_rounds + 1));
84 memcpy(S, stab, t * sizeof(*S));
85
86 /* mix buffer */
87 s = 3 * MAX(t, j);
88 l = j;
89 for (A = B = i = j = v = 0; v < s; v++) {
90 A = S[i] = ROL(S[i] + A + B, 3);
91 B = L[j] = ROL(L[j] + A + B, (A+B));
92 if (++i == t) { i = 0; }
93 if (++j == l) { j = 0; }
94 }
95 return CRYPT_OK;
96 }
97
98 #ifdef CLEAN_STACK
99 int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
100 {
101 int x;
102 x = _rc5_setup(key, keylen, num_rounds, skey);
103 burn_stack(sizeof(ulong32) * 122 + sizeof(int));
104 return x;
105 }
106 #endif
107
108 #ifdef CLEAN_STACK
109 static void _rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
110 #else
111 void rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
112 #endif
113 {
114 ulong32 A, B, *K;
115 int r;
116 _ARGCHK(key != NULL);
117 _ARGCHK(pt != NULL);
118 _ARGCHK(ct != NULL);
119
120 LOAD32L(A, &pt[0]);
121 LOAD32L(B, &pt[4]);
122 A += key->rc5.K[0];
123 B += key->rc5.K[1];
124 K = key->rc5.K + 2;
125
126 if ((key->rc5.rounds & 1) == 0) {
127 for (r = 0; r < key->rc5.rounds; r += 2) {
128 A = ROL(A ^ B, B) + K[0];
129 B = ROL(B ^ A, A) + K[1];
130 A = ROL(A ^ B, B) + K[2];
131 B = ROL(B ^ A, A) + K[3];
132 K += 4;
133 }
134 } else {
135 for (r = 0; r < key->rc5.rounds; r++) {
136 A = ROL(A ^ B, B) + K[0];
137 B = ROL(B ^ A, A) + K[1];
138 K += 2;
139 }
140 }
141 STORE32L(A, &ct[0]);
142 STORE32L(B, &ct[4]);
143 }
144
145 #ifdef CLEAN_STACK
146 void rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key)
147 {
148 _rc5_ecb_encrypt(pt, ct, key);
149 burn_stack(sizeof(ulong32) * 2 + sizeof(int));
150 }
151 #endif
152
153 #ifdef CLEAN_STACK
154 static void _rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
155 #else
156 void rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
157 #endif
158 {
159 ulong32 A, B, *K;
160 int r;
161 _ARGCHK(key != NULL);
162 _ARGCHK(pt != NULL);
163 _ARGCHK(ct != NULL);
164
165 LOAD32L(A, &ct[0]);
166 LOAD32L(B, &ct[4]);
167 K = key->rc5.K + (key->rc5.rounds << 1);
168
169 if ((key->rc5.rounds & 1) == 0) {
170 K -= 2;
171 for (r = key->rc5.rounds - 1; r >= 0; r -= 2) {
172 B = ROR(B - K[3], A) ^ A;
173 A = ROR(A - K[2], B) ^ B;
174 B = ROR(B - K[1], A) ^ A;
175 A = ROR(A - K[0], B) ^ B;
176 K -= 4;
177 }
178 } else {
179 for (r = key->rc5.rounds - 1; r >= 0; r--) {
180 B = ROR(B - K[1], A) ^ A;
181 A = ROR(A - K[0], B) ^ B;
182 K -= 2;
183 }
184 }
185 A -= key->rc5.K[0];
186 B -= key->rc5.K[1];
187 STORE32L(A, &pt[0]);
188 STORE32L(B, &pt[4]);
189 }
190
191 #ifdef CLEAN_STACK
192 void rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key)
193 {
194 _rc5_ecb_decrypt(ct, pt, key);
195 burn_stack(sizeof(ulong32) * 2 + sizeof(int));
196 }
197 #endif
198
199 int rc5_test(void)
200 {
201 #ifndef LTC_TEST
202 return CRYPT_NOP;
203 #else
204 static const struct {
205 unsigned char key[16], pt[8], ct[8];
206 } tests[] = {
207 {
208 { 0x91, 0x5f, 0x46, 0x19, 0xbe, 0x41, 0xb2, 0x51,
209 0x63, 0x55, 0xa5, 0x01, 0x10, 0xa9, 0xce, 0x91 },
210 { 0x21, 0xa5, 0xdb, 0xee, 0x15, 0x4b, 0x8f, 0x6d },
211 { 0xf7, 0xc0, 0x13, 0xac, 0x5b, 0x2b, 0x89, 0x52 }
212 },
213 {
214 { 0x78, 0x33, 0x48, 0xe7, 0x5a, 0xeb, 0x0f, 0x2f,
215 0xd7, 0xb1, 0x69, 0xbb, 0x8d, 0xc1, 0x67, 0x87 },
216 { 0xF7, 0xC0, 0x13, 0xAC, 0x5B, 0x2B, 0x89, 0x52 },
217 { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 }
218 },
219 {
220 { 0xDC, 0x49, 0xdb, 0x13, 0x75, 0xa5, 0x58, 0x4f,
221 0x64, 0x85, 0xb4, 0x13, 0xb5, 0xf1, 0x2b, 0xaf },
222 { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 },
223 { 0x65, 0xc1, 0x78, 0xb2, 0x84, 0xd1, 0x97, 0xcc }
224 }
225 };
226 unsigned char tmp[2][8];
227 int x, y, err;
228 symmetric_key key;
229
230 for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
231 /* setup key */
232 if ((err = rc5_setup(tests[x].key, 16, 12, &key)) != CRYPT_OK) {
233 return err;
234 }
235
236 /* encrypt and decrypt */
237 rc5_ecb_encrypt(tests[x].pt, tmp[0], &key);
238 rc5_ecb_decrypt(tmp[0], tmp[1], &key);
239
240 /* compare */
241 if (memcmp(tmp[0], tests[x].ct, 8) != 0 || memcmp(tmp[1], tests[x].pt, 8) != 0) {
242 return CRYPT_FAIL_TESTVECTOR;
243 }
244
245 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
246 for (y = 0; y < 8; y++) tmp[0][y] = 0;
247 for (y = 0; y < 1000; y++) rc5_ecb_encrypt(tmp[0], tmp[0], &key);
248 for (y = 0; y < 1000; y++) rc5_ecb_decrypt(tmp[0], tmp[0], &key);
249 for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
250 }
251 return CRYPT_OK;
252 #endif
253 }
254
255 int rc5_keysize(int *desired_keysize)
256 {
257 _ARGCHK(desired_keysize != NULL);
258 if (*desired_keysize < 8) {
259 return CRYPT_INVALID_KEYSIZE;
260 } else if (*desired_keysize > 128) {
261 *desired_keysize = 128;
262 }
263 return CRYPT_OK;
264 }
265
266 #endif
267
268
269