Mercurial > dropbear
comparison rc6.c @ 0:d7da3b1e1540 libtomcrypt
put back the 0.95 makefile which was inadvertently merged over
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:21:40 +0000 |
parents | |
children | 5d99163f7e32 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d7da3b1e1540 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 | |
12 /* RC6 code by Tom St Denis */ | |
13 #include "mycrypt.h" | |
14 | |
15 #ifdef RC6 | |
16 | |
17 const struct _cipher_descriptor rc6_desc = | |
18 { | |
19 "rc6", | |
20 3, | |
21 8, 128, 16, 20, | |
22 &rc6_setup, | |
23 &rc6_ecb_encrypt, | |
24 &rc6_ecb_decrypt, | |
25 &rc6_test, | |
26 &rc6_keysize | |
27 }; | |
28 | |
29 static const ulong32 stab[44] = { | |
30 0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL, | |
31 0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL, | |
32 0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL, | |
33 0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL, | |
34 0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL, | |
35 0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL }; | |
36 | |
37 #ifdef CLEAN_STACK | |
38 static int _rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
39 #else | |
40 int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
41 #endif | |
42 { | |
43 ulong32 L[64], S[50], A, B, i, j, v, s, l; | |
44 | |
45 _ARGCHK(key != NULL); | |
46 _ARGCHK(skey != NULL); | |
47 | |
48 /* test parameters */ | |
49 if (num_rounds != 0 && num_rounds != 20) { | |
50 return CRYPT_INVALID_ROUNDS; | |
51 } | |
52 | |
53 /* key must be between 64 and 1024 bits */ | |
54 if (keylen < 8 || keylen > 128) { | |
55 return CRYPT_INVALID_KEYSIZE; | |
56 } | |
57 | |
58 /* copy the key into the L array */ | |
59 for (A = i = j = 0; i < (ulong32)keylen; ) { | |
60 A = (A << 8) | ((ulong32)(key[i++] & 255)); | |
61 if (!(i & 3)) { | |
62 L[j++] = BSWAP(A); | |
63 A = 0; | |
64 } | |
65 } | |
66 | |
67 /* handle odd sized keys */ | |
68 if (keylen & 3) { | |
69 A <<= (8 * (4 - (keylen&3))); | |
70 L[j++] = BSWAP(A); | |
71 } | |
72 | |
73 /* setup the S array */ | |
74 memcpy(S, stab, 44 * sizeof(stab[0])); | |
75 | |
76 /* mix buffer */ | |
77 s = 3 * MAX(44, j); | |
78 l = j; | |
79 for (A = B = i = j = v = 0; v < s; v++) { | |
80 A = S[i] = ROL(S[i] + A + B, 3); | |
81 B = L[j] = ROL(L[j] + A + B, (A+B)); | |
82 if (++i == 44) { i = 0; } | |
83 if (++j == l) { j = 0; } | |
84 } | |
85 | |
86 /* copy to key */ | |
87 for (i = 0; i < 44; i++) { | |
88 skey->rc6.K[i] = S[i]; | |
89 } | |
90 return CRYPT_OK; | |
91 } | |
92 | |
93 #ifdef CLEAN_STACK | |
94 int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
95 { | |
96 int x; | |
97 x = _rc6_setup(key, keylen, num_rounds, skey); | |
98 burn_stack(sizeof(ulong32) * 122); | |
99 return x; | |
100 } | |
101 #endif | |
102 | |
103 #ifdef CLEAN_STACK | |
104 static void _rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) | |
105 #else | |
106 void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) | |
107 #endif | |
108 { | |
109 ulong32 a,b,c,d,t,u, *K; | |
110 int r; | |
111 | |
112 _ARGCHK(key != NULL); | |
113 _ARGCHK(pt != NULL); | |
114 _ARGCHK(ct != NULL); | |
115 LOAD32L(a,&pt[0]);LOAD32L(b,&pt[4]);LOAD32L(c,&pt[8]);LOAD32L(d,&pt[12]); | |
116 | |
117 b += key->rc6.K[0]; | |
118 d += key->rc6.K[1]; | |
119 | |
120 #define RND(a,b,c,d) \ | |
121 t = (b * (b + b + 1)); t = ROL(t, 5); \ | |
122 u = (d * (d + d + 1)); u = ROL(u, 5); \ | |
123 a = ROL(a^t,u) + K[0]; \ | |
124 c = ROL(c^u,t) + K[1]; K += 2; | |
125 | |
126 K = key->rc6.K + 2; | |
127 for (r = 0; r < 20; r += 4) { | |
128 RND(a,b,c,d); | |
129 RND(b,c,d,a); | |
130 RND(c,d,a,b); | |
131 RND(d,a,b,c); | |
132 } | |
133 | |
134 #undef RND | |
135 | |
136 a += key->rc6.K[42]; | |
137 c += key->rc6.K[43]; | |
138 STORE32L(a,&ct[0]);STORE32L(b,&ct[4]);STORE32L(c,&ct[8]);STORE32L(d,&ct[12]); | |
139 } | |
140 | |
141 #ifdef CLEAN_STACK | |
142 void rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) | |
143 { | |
144 _rc6_ecb_encrypt(pt, ct, key); | |
145 burn_stack(sizeof(ulong32) * 6 + sizeof(int)); | |
146 } | |
147 #endif | |
148 | |
149 #ifdef CLEAN_STACK | |
150 static void _rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) | |
151 #else | |
152 void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) | |
153 #endif | |
154 { | |
155 ulong32 a,b,c,d,t,u, *K; | |
156 int r; | |
157 | |
158 _ARGCHK(key != NULL); | |
159 _ARGCHK(pt != NULL); | |
160 _ARGCHK(ct != NULL); | |
161 | |
162 LOAD32L(a,&ct[0]);LOAD32L(b,&ct[4]);LOAD32L(c,&ct[8]);LOAD32L(d,&ct[12]); | |
163 a -= key->rc6.K[42]; | |
164 c -= key->rc6.K[43]; | |
165 | |
166 #define RND(a,b,c,d) \ | |
167 t = (b * (b + b + 1)); t = ROL(t, 5); \ | |
168 u = (d * (d + d + 1)); u = ROL(u, 5); \ | |
169 c = ROR(c - K[1], t) ^ u; \ | |
170 a = ROR(a - K[0], u) ^ t; K -= 2; | |
171 | |
172 K = key->rc6.K + 40; | |
173 | |
174 for (r = 0; r < 20; r += 4) { | |
175 RND(d,a,b,c); | |
176 RND(c,d,a,b); | |
177 RND(b,c,d,a); | |
178 RND(a,b,c,d); | |
179 } | |
180 | |
181 #undef RND | |
182 | |
183 b -= key->rc6.K[0]; | |
184 d -= key->rc6.K[1]; | |
185 STORE32L(a,&pt[0]);STORE32L(b,&pt[4]);STORE32L(c,&pt[8]);STORE32L(d,&pt[12]); | |
186 } | |
187 | |
188 #ifdef CLEAN_STACK | |
189 void rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) | |
190 { | |
191 _rc6_ecb_decrypt(ct, pt, key); | |
192 burn_stack(sizeof(ulong32) * 6 + sizeof(int)); | |
193 } | |
194 #endif | |
195 | |
196 int rc6_test(void) | |
197 { | |
198 #ifndef LTC_TEST | |
199 return CRYPT_NOP; | |
200 #else | |
201 static const struct { | |
202 int keylen; | |
203 unsigned char key[32], pt[16], ct[16]; | |
204 } tests[] = { | |
205 { | |
206 16, | |
207 { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, | |
208 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, | |
209 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | |
210 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, | |
211 { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, | |
212 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, | |
213 { 0x52, 0x4e, 0x19, 0x2f, 0x47, 0x15, 0xc6, 0x23, | |
214 0x1f, 0x51, 0xf6, 0x36, 0x7e, 0xa4, 0x3f, 0x18 } | |
215 }, | |
216 { | |
217 24, | |
218 { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, | |
219 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, | |
220 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0, | |
221 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, | |
222 { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, | |
223 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, | |
224 { 0x68, 0x83, 0x29, 0xd0, 0x19, 0xe5, 0x05, 0x04, | |
225 0x1e, 0x52, 0xe9, 0x2a, 0xf9, 0x52, 0x91, 0xd4 } | |
226 }, | |
227 { | |
228 32, | |
229 { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, | |
230 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, | |
231 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0, | |
232 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }, | |
233 { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, | |
234 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, | |
235 { 0xc8, 0x24, 0x18, 0x16, 0xf0, 0xd7, 0xe4, 0x89, | |
236 0x20, 0xad, 0x16, 0xa1, 0x67, 0x4e, 0x5d, 0x48 } | |
237 } | |
238 }; | |
239 unsigned char tmp[2][16]; | |
240 int x, y, err; | |
241 symmetric_key key; | |
242 | |
243 for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { | |
244 /* setup key */ | |
245 if ((err = rc6_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) { | |
246 return err; | |
247 } | |
248 | |
249 /* encrypt and decrypt */ | |
250 rc6_ecb_encrypt(tests[x].pt, tmp[0], &key); | |
251 rc6_ecb_decrypt(tmp[0], tmp[1], &key); | |
252 | |
253 /* compare */ | |
254 if (memcmp(tmp[0], tests[x].ct, 16) || memcmp(tmp[1], tests[x].pt, 16)) { | |
255 #if 0 | |
256 printf("\n\nFailed test %d\n", x); | |
257 if (memcmp(tmp[0], tests[x].ct, 16)) { | |
258 printf("Ciphertext: "); | |
259 for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]); | |
260 printf("\nExpected : "); | |
261 for (y = 0; y < 16; y++) printf("%02x ", tests[x].ct[y]); | |
262 printf("\n"); | |
263 } | |
264 if (memcmp(tmp[1], tests[x].pt, 16)) { | |
265 printf("Plaintext: "); | |
266 for (y = 0; y < 16; y++) printf("%02x ", tmp[0][y]); | |
267 printf("\nExpected : "); | |
268 for (y = 0; y < 16; y++) printf("%02x ", tests[x].pt[y]); | |
269 printf("\n"); | |
270 } | |
271 #endif | |
272 return CRYPT_FAIL_TESTVECTOR; | |
273 } | |
274 | |
275 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ | |
276 for (y = 0; y < 16; y++) tmp[0][y] = 0; | |
277 for (y = 0; y < 1000; y++) rc6_ecb_encrypt(tmp[0], tmp[0], &key); | |
278 for (y = 0; y < 1000; y++) rc6_ecb_decrypt(tmp[0], tmp[0], &key); | |
279 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; | |
280 } | |
281 return CRYPT_OK; | |
282 #endif | |
283 } | |
284 | |
285 int rc6_keysize(int *desired_keysize) | |
286 { | |
287 _ARGCHK(desired_keysize != NULL); | |
288 if (*desired_keysize < 8) { | |
289 return CRYPT_INVALID_KEYSIZE; | |
290 } else if (*desired_keysize > 128) { | |
291 *desired_keysize = 128; | |
292 } | |
293 return CRYPT_OK; | |
294 } | |
295 | |
296 #endif /*RC6*/ | |
297 | |
298 |