comparison saferp.c @ 0:d7da3b1e1540 libtomcrypt

put back the 0.95 makefile which was inadvertently merged over
author Matt Johnston <matt@ucc.asn.au>
date Mon, 31 May 2004 18:21:40 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:d7da3b1e1540
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, [email protected], http://libtomcrypt.org
10 */
11
12 /* SAFER+ Implementation by Tom St Denis */
13 #include "mycrypt.h"
14
15 #ifdef SAFERP
16
17 const struct _cipher_descriptor saferp_desc =
18 {
19 "safer+",
20 4,
21 16, 32, 16, 8,
22 &saferp_setup,
23 &saferp_ecb_encrypt,
24 &saferp_ecb_decrypt,
25 &saferp_test,
26 &saferp_keysize
27 };
28
29 /* ROUND(b,i)
30 *
31 * This is one forward key application. Note the basic form is
32 * key addition, substitution, key addition. The safer_ebox and safer_lbox
33 * are the exponentiation box and logarithm boxes respectively.
34 * The value of 'i' is the current round number which allows this
35 * function to be unrolled massively. Most of SAFER+'s speed
36 * comes from not having to compute indirect accesses into the
37 * array of 16 bytes b[0..15] which is the block of data
38 */
39
40 extern const unsigned char safer_ebox[], safer_lbox[];
41
42 #define ROUND(b, i) \
43 b[0] = (safer_ebox[(b[0] ^ skey->saferp.K[i][0]) & 255] + skey->saferp.K[i+1][0]) & 255; \
44 b[1] = safer_lbox[(b[1] + skey->saferp.K[i][1]) & 255] ^ skey->saferp.K[i+1][1]; \
45 b[2] = safer_lbox[(b[2] + skey->saferp.K[i][2]) & 255] ^ skey->saferp.K[i+1][2]; \
46 b[3] = (safer_ebox[(b[3] ^ skey->saferp.K[i][3]) & 255] + skey->saferp.K[i+1][3]) & 255; \
47 b[4] = (safer_ebox[(b[4] ^ skey->saferp.K[i][4]) & 255] + skey->saferp.K[i+1][4]) & 255; \
48 b[5] = safer_lbox[(b[5] + skey->saferp.K[i][5]) & 255] ^ skey->saferp.K[i+1][5]; \
49 b[6] = safer_lbox[(b[6] + skey->saferp.K[i][6]) & 255] ^ skey->saferp.K[i+1][6]; \
50 b[7] = (safer_ebox[(b[7] ^ skey->saferp.K[i][7]) & 255] + skey->saferp.K[i+1][7]) & 255; \
51 b[8] = (safer_ebox[(b[8] ^ skey->saferp.K[i][8]) & 255] + skey->saferp.K[i+1][8]) & 255; \
52 b[9] = safer_lbox[(b[9] + skey->saferp.K[i][9]) & 255] ^ skey->saferp.K[i+1][9]; \
53 b[10] = safer_lbox[(b[10] + skey->saferp.K[i][10]) & 255] ^ skey->saferp.K[i+1][10]; \
54 b[11] = (safer_ebox[(b[11] ^ skey->saferp.K[i][11]) & 255] + skey->saferp.K[i+1][11]) & 255; \
55 b[12] = (safer_ebox[(b[12] ^ skey->saferp.K[i][12]) & 255] + skey->saferp.K[i+1][12]) & 255; \
56 b[13] = safer_lbox[(b[13] + skey->saferp.K[i][13]) & 255] ^ skey->saferp.K[i+1][13]; \
57 b[14] = safer_lbox[(b[14] + skey->saferp.K[i][14]) & 255] ^ skey->saferp.K[i+1][14]; \
58 b[15] = (safer_ebox[(b[15] ^ skey->saferp.K[i][15]) & 255] + skey->saferp.K[i+1][15]) & 255;
59
60 /* This is one inverse key application */
61 #define iROUND(b, i) \
62 b[0] = safer_lbox[(b[0] - skey->saferp.K[i+1][0]) & 255] ^ skey->saferp.K[i][0]; \
63 b[1] = (safer_ebox[(b[1] ^ skey->saferp.K[i+1][1]) & 255] - skey->saferp.K[i][1]) & 255; \
64 b[2] = (safer_ebox[(b[2] ^ skey->saferp.K[i+1][2]) & 255] - skey->saferp.K[i][2]) & 255; \
65 b[3] = safer_lbox[(b[3] - skey->saferp.K[i+1][3]) & 255] ^ skey->saferp.K[i][3]; \
66 b[4] = safer_lbox[(b[4] - skey->saferp.K[i+1][4]) & 255] ^ skey->saferp.K[i][4]; \
67 b[5] = (safer_ebox[(b[5] ^ skey->saferp.K[i+1][5]) & 255] - skey->saferp.K[i][5]) & 255; \
68 b[6] = (safer_ebox[(b[6] ^ skey->saferp.K[i+1][6]) & 255] - skey->saferp.K[i][6]) & 255; \
69 b[7] = safer_lbox[(b[7] - skey->saferp.K[i+1][7]) & 255] ^ skey->saferp.K[i][7]; \
70 b[8] = safer_lbox[(b[8] - skey->saferp.K[i+1][8]) & 255] ^ skey->saferp.K[i][8]; \
71 b[9] = (safer_ebox[(b[9] ^ skey->saferp.K[i+1][9]) & 255] - skey->saferp.K[i][9]) & 255; \
72 b[10] = (safer_ebox[(b[10] ^ skey->saferp.K[i+1][10]) & 255] - skey->saferp.K[i][10]) & 255; \
73 b[11] = safer_lbox[(b[11] - skey->saferp.K[i+1][11]) & 255] ^ skey->saferp.K[i][11]; \
74 b[12] = safer_lbox[(b[12] - skey->saferp.K[i+1][12]) & 255] ^ skey->saferp.K[i][12]; \
75 b[13] = (safer_ebox[(b[13] ^ skey->saferp.K[i+1][13]) & 255] - skey->saferp.K[i][13]) & 255; \
76 b[14] = (safer_ebox[(b[14] ^ skey->saferp.K[i+1][14]) & 255] - skey->saferp.K[i][14]) & 255; \
77 b[15] = safer_lbox[(b[15] - skey->saferp.K[i+1][15]) & 255] ^ skey->saferp.K[i][15];
78
79 /* This is a forward single layer PHT transform. */
80 #define PHT(b) \
81 b[0] = (b[0] + (b[1] = (b[0] + b[1]) & 255)) & 255; \
82 b[2] = (b[2] + (b[3] = (b[3] + b[2]) & 255)) & 255; \
83 b[4] = (b[4] + (b[5] = (b[5] + b[4]) & 255)) & 255; \
84 b[6] = (b[6] + (b[7] = (b[7] + b[6]) & 255)) & 255; \
85 b[8] = (b[8] + (b[9] = (b[9] + b[8]) & 255)) & 255; \
86 b[10] = (b[10] + (b[11] = (b[11] + b[10]) & 255)) & 255; \
87 b[12] = (b[12] + (b[13] = (b[13] + b[12]) & 255)) & 255; \
88 b[14] = (b[14] + (b[15] = (b[15] + b[14]) & 255)) & 255;
89
90 /* This is an inverse single layer PHT transform */
91 #define iPHT(b) \
92 b[15] = (b[15] - (b[14] = (b[14] - b[15]) & 255)) & 255; \
93 b[13] = (b[13] - (b[12] = (b[12] - b[13]) & 255)) & 255; \
94 b[11] = (b[11] - (b[10] = (b[10] - b[11]) & 255)) & 255; \
95 b[9] = (b[9] - (b[8] = (b[8] - b[9]) & 255)) & 255; \
96 b[7] = (b[7] - (b[6] = (b[6] - b[7]) & 255)) & 255; \
97 b[5] = (b[5] - (b[4] = (b[4] - b[5]) & 255)) & 255; \
98 b[3] = (b[3] - (b[2] = (b[2] - b[3]) & 255)) & 255; \
99 b[1] = (b[1] - (b[0] = (b[0] - b[1]) & 255)) & 255; \
100
101 /* This is the "Armenian" Shuffle. It takes the input from b and stores it in b2 */
102 #define SHUF(b, b2) \
103 b2[0] = b[8]; b2[1] = b[11]; b2[2] = b[12]; b2[3] = b[15]; \
104 b2[4] = b[2]; b2[5] = b[1]; b2[6] = b[6]; b2[7] = b[5]; \
105 b2[8] = b[10]; b2[9] = b[9]; b2[10] = b[14]; b2[11] = b[13]; \
106 b2[12] = b[0]; b2[13] = b[7]; b2[14] = b[4]; b2[15] = b[3];
107
108 /* This is the inverse shuffle. It takes from b and gives to b2 */
109 #define iSHUF(b, b2) \
110 b2[0] = b[12]; b2[1] = b[5]; b2[2] = b[4]; b2[3] = b[15]; \
111 b2[4] = b[14]; b2[5] = b[7]; b2[6] = b[6]; b2[7] = b[13]; \
112 b2[8] = b[0]; b2[9] = b[9]; b2[10] = b[8]; b2[11] = b[1]; \
113 b2[12] = b[2]; b2[13] = b[11]; b2[14] = b[10]; b2[15] = b[3];
114
115 /* The complete forward Linear Transform layer.
116 * Note that alternating usage of b and b2.
117 * Each round of LT starts in 'b' and ends in 'b2'.
118 */
119 #define LT(b, b2) \
120 PHT(b); SHUF(b, b2); \
121 PHT(b2); SHUF(b2, b); \
122 PHT(b); SHUF(b, b2); \
123 PHT(b2);
124
125 /* This is the inverse linear transform layer. */
126 #define iLT(b, b2) \
127 iPHT(b); \
128 iSHUF(b, b2); iPHT(b2); \
129 iSHUF(b2, b); iPHT(b); \
130 iSHUF(b, b2); iPHT(b2);
131
132 #ifdef SMALL_CODE
133
134 static void _round(unsigned char *b, int i, symmetric_key *skey)
135 {
136 ROUND(b, i);
137 }
138
139 static void _iround(unsigned char *b, int i, symmetric_key *skey)
140 {
141 iROUND(b, i);
142 }
143
144 static void _lt(unsigned char *b, unsigned char *b2)
145 {
146 LT(b, b2);
147 }
148
149 static void _ilt(unsigned char *b, unsigned char *b2)
150 {
151 iLT(b, b2);
152 }
153
154 #undef ROUND
155 #define ROUND(b, i) _round(b, i, skey)
156
157 #undef iROUND
158 #define iROUND(b, i) _iround(b, i, skey)
159
160 #undef LT
161 #define LT(b, b2) _lt(b, b2)
162
163 #undef iLT
164 #define iLT(b, b2) _ilt(b, b2)
165
166 #endif
167
168 /* These are the 33, 128-bit bias words for the key schedule */
169 static const unsigned char safer_bias[33][16] = {
170 { 70, 151, 177, 186, 163, 183, 16, 10, 197, 55, 179, 201, 90, 40, 172, 100},
171 { 236, 171, 170, 198, 103, 149, 88, 13, 248, 154, 246, 110, 102, 220, 5, 61},
172 { 138, 195, 216, 137, 106, 233, 54, 73, 67, 191, 235, 212, 150, 155, 104, 160},
173 { 93, 87, 146, 31, 213, 113, 92, 187, 34, 193, 190, 123, 188, 153, 99, 148},
174 { 42, 97, 184, 52, 50, 25, 253, 251, 23, 64, 230, 81, 29, 65, 68, 143},
175 { 221, 4, 128, 222, 231, 49, 214, 127, 1, 162, 247, 57, 218, 111, 35, 202},
176 { 58, 208, 28, 209, 48, 62, 18, 161, 205, 15, 224, 168, 175, 130, 89, 44},
177 { 125, 173, 178, 239, 194, 135, 206, 117, 6, 19, 2, 144, 79, 46, 114, 51},
178 { 192, 141, 207, 169, 129, 226, 196, 39, 47, 108, 122, 159, 82, 225, 21, 56},
179 { 252, 32, 66, 199, 8, 228, 9, 85, 94, 140, 20, 118, 96, 255, 223, 215},
180 { 250, 11, 33, 0, 26, 249, 166, 185, 232, 158, 98, 76, 217, 145, 80, 210},
181 { 24, 180, 7, 132, 234, 91, 164, 200, 14, 203, 72, 105, 75, 78, 156, 53},
182 { 69, 77, 84, 229, 37, 60, 12, 74, 139, 63, 204, 167, 219, 107, 174, 244},
183 { 45, 243, 124, 109, 157, 181, 38, 116, 242, 147, 83, 176, 240, 17, 237, 131},
184 { 182, 3, 22, 115, 59, 30, 142, 112, 189, 134, 27, 71, 126, 36, 86, 241},
185 { 136, 70, 151, 177, 186, 163, 183, 16, 10, 197, 55, 179, 201, 90, 40, 172},
186 { 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131, 241, 51, 239},
187 { 44, 181, 178, 43, 136, 209, 153, 203, 140, 132, 29, 20, 129, 151, 113, 202},
188 { 163, 139, 87, 60, 130, 196, 82, 92, 28, 232, 160, 4, 180, 133, 74, 246},
189 { 84, 182, 223, 12, 26, 142, 222, 224, 57, 252, 32, 155, 36, 78, 169, 152},
190 { 171, 242, 96, 208, 108, 234, 250, 199, 217, 0, 212, 31, 110, 67, 188, 236},
191 { 137, 254, 122, 93, 73, 201, 50, 194, 249, 154, 248, 109, 22, 219, 89, 150},
192 { 233, 205, 230, 70, 66, 143, 10, 193, 204, 185, 101, 176, 210, 198, 172, 30},
193 { 98, 41, 46, 14, 116, 80, 2, 90, 195, 37, 123, 138, 42, 91, 240, 6},
194 { 71, 111, 112, 157, 126, 16, 206, 18, 39, 213, 76, 79, 214, 121, 48, 104},
195 { 117, 125, 228, 237, 128, 106, 144, 55, 162, 94, 118, 170, 197, 127, 61, 175},
196 { 229, 25, 97, 253, 77, 124, 183, 11, 238, 173, 75, 34, 245, 231, 115, 35},
197 { 200, 5, 225, 102, 221, 179, 88, 105, 99, 86, 15, 161, 49, 149, 23, 7},
198 { 40, 1, 45, 226, 147, 190, 69, 21, 174, 120, 3, 135, 164, 184, 56, 207},
199 { 8, 103, 9, 148, 235, 38, 168, 107, 189, 24, 52, 27, 187, 191, 114, 247},
200 { 53, 72, 156, 81, 47, 59, 85, 227, 192, 159, 216, 211, 243, 141, 177, 255},
201 { 62, 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131, 241, 51}};
202
203 int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
204 {
205 unsigned x, y, z;
206 unsigned char t[33];
207 static const int rounds[3] = { 8, 12, 16 };
208
209 _ARGCHK(key != NULL);
210 _ARGCHK(skey != NULL);
211
212 /* check arguments */
213 if (keylen != 16 && keylen != 24 && keylen != 32) {
214 return CRYPT_INVALID_KEYSIZE;
215 }
216
217 /* Is the number of rounds valid? Either use zero for default or
218 * 8,12,16 rounds for 16,24,32 byte keys
219 */
220 if (num_rounds != 0 && num_rounds != rounds[(keylen/8)-2]) {
221 return CRYPT_INVALID_ROUNDS;
222 }
223
224 /* 128 bit key version */
225 if (keylen == 16) {
226 /* copy key into t */
227 for (x = y = 0; x < 16; x++) {
228 t[x] = key[x];
229 y ^= key[x];
230 }
231 t[16] = y;
232
233 /* make round keys */
234 for (x = 0; x < 16; x++) {
235 skey->saferp.K[0][x] = t[x];
236 }
237
238 /* make the 16 other keys as a transformation of the first key */
239 for (x = 1; x < 17; x++) {
240 /* rotate 3 bits each */
241 for (y = 0; y < 17; y++) {
242 t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
243 }
244
245 /* select and add */
246 z = x;
247 for (y = 0; y < 16; y++) {
248 skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
249 if (++z == 17) { z = 0; }
250 }
251 }
252 skey->saferp.rounds = 8;
253 } else if (keylen == 24) {
254 /* copy key into t */
255 for (x = y = 0; x < 24; x++) {
256 t[x] = key[x];
257 y ^= key[x];
258 }
259 t[24] = y;
260
261 /* make round keys */
262 for (x = 0; x < 16; x++) {
263 skey->saferp.K[0][x] = t[x];
264 }
265
266 for (x = 1; x < 25; x++) {
267 /* rotate 3 bits each */
268 for (y = 0; y < 25; y++) {
269 t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
270 }
271
272 /* select and add */
273 z = x;
274 for (y = 0; y < 16; y++) {
275 skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
276 if (++z == 25) { z = 0; }
277 }
278 }
279 skey->saferp.rounds = 12;
280 } else {
281 /* copy key into t */
282 for (x = y = 0; x < 32; x++) {
283 t[x] = key[x];
284 y ^= key[x];
285 }
286 t[32] = y;
287
288 /* make round keys */
289 for (x = 0; x < 16; x++) {
290 skey->saferp.K[0][x] = t[x];
291 }
292
293 for (x = 1; x < 33; x++) {
294 /* rotate 3 bits each */
295 for (y = 0; y < 33; y++) {
296 t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
297 }
298
299 /* select and add */
300 z = x;
301 for (y = 0; y < 16; y++) {
302 skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
303 if (++z == 33) { z = 0; }
304 }
305 }
306 skey->saferp.rounds = 16;
307 }
308 #ifdef CLEAN_STACK
309 zeromem(t, sizeof(t));
310 #endif
311 return CRYPT_OK;
312 }
313
314 void saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
315 {
316 unsigned char b[16];
317 int x;
318
319 _ARGCHK(pt != NULL);
320 _ARGCHK(ct != NULL);
321 _ARGCHK(skey != NULL);
322
323 /* do eight rounds */
324 for (x = 0; x < 16; x++) {
325 b[x] = pt[x];
326 }
327 ROUND(b, 0); LT(b, ct);
328 ROUND(ct, 2); LT(ct, b);
329 ROUND(b, 4); LT(b, ct);
330 ROUND(ct, 6); LT(ct, b);
331 ROUND(b, 8); LT(b, ct);
332 ROUND(ct, 10); LT(ct, b);
333 ROUND(b, 12); LT(b, ct);
334 ROUND(ct, 14); LT(ct, b);
335 /* 192-bit key? */
336 if (skey->saferp.rounds > 8) {
337 ROUND(b, 16); LT(b, ct);
338 ROUND(ct, 18); LT(ct, b);
339 ROUND(b, 20); LT(b, ct);
340 ROUND(ct, 22); LT(ct, b);
341 }
342 /* 256-bit key? */
343 if (skey->saferp.rounds > 12) {
344 ROUND(b, 24); LT(b, ct);
345 ROUND(ct, 26); LT(ct, b);
346 ROUND(b, 28); LT(b, ct);
347 ROUND(ct, 30); LT(ct, b);
348 }
349 ct[0] = b[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
350 ct[1] = (b[1] + skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
351 ct[2] = (b[2] + skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
352 ct[3] = b[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
353 ct[4] = b[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
354 ct[5] = (b[5] + skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
355 ct[6] = (b[6] + skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
356 ct[7] = b[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
357 ct[8] = b[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
358 ct[9] = (b[9] + skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
359 ct[10] = (b[10] + skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
360 ct[11] = b[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
361 ct[12] = b[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
362 ct[13] = (b[13] + skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
363 ct[14] = (b[14] + skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
364 ct[15] = b[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
365 #ifdef CLEAN_STACK
366 zeromem(b, sizeof(b));
367 #endif
368 }
369
370 void saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
371 {
372 unsigned char b[16];
373 int x;
374
375 _ARGCHK(pt != NULL);
376 _ARGCHK(ct != NULL);
377 _ARGCHK(skey != NULL);
378
379 /* do eight rounds */
380 b[0] = ct[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
381 b[1] = (ct[1] - skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
382 b[2] = (ct[2] - skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
383 b[3] = ct[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
384 b[4] = ct[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
385 b[5] = (ct[5] - skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
386 b[6] = (ct[6] - skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
387 b[7] = ct[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
388 b[8] = ct[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
389 b[9] = (ct[9] - skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
390 b[10] = (ct[10] - skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
391 b[11] = ct[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
392 b[12] = ct[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
393 b[13] = (ct[13] - skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
394 b[14] = (ct[14] - skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
395 b[15] = ct[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
396 /* 256-bit key? */
397 if (skey->saferp.rounds > 12) {
398 iLT(b, pt); iROUND(pt, 30);
399 iLT(pt, b); iROUND(b, 28);
400 iLT(b, pt); iROUND(pt, 26);
401 iLT(pt, b); iROUND(b, 24);
402 }
403 /* 192-bit key? */
404 if (skey->saferp.rounds > 8) {
405 iLT(b, pt); iROUND(pt, 22);
406 iLT(pt, b); iROUND(b, 20);
407 iLT(b, pt); iROUND(pt, 18);
408 iLT(pt, b); iROUND(b, 16);
409 }
410 iLT(b, pt); iROUND(pt, 14);
411 iLT(pt, b); iROUND(b, 12);
412 iLT(b, pt); iROUND(pt,10);
413 iLT(pt, b); iROUND(b, 8);
414 iLT(b, pt); iROUND(pt,6);
415 iLT(pt, b); iROUND(b, 4);
416 iLT(b, pt); iROUND(pt,2);
417 iLT(pt, b); iROUND(b, 0);
418 for (x = 0; x < 16; x++) {
419 pt[x] = b[x];
420 }
421 #ifdef CLEAN_STACK
422 zeromem(b, sizeof(b));
423 #endif
424 }
425
426 int saferp_test(void)
427 {
428 #ifndef LTC_TEST
429 return CRYPT_NOP;
430 #else
431 static const struct {
432 int keylen;
433 unsigned char key[32], pt[16], ct[16];
434 } tests[] = {
435 {
436 16,
437 { 41, 35, 190, 132, 225, 108, 214, 174,
438 82, 144, 73, 241, 241, 187, 233, 235 },
439 { 179, 166, 219, 60, 135, 12, 62, 153,
440 36, 94, 13, 28, 6, 183, 71, 222 },
441 { 224, 31, 182, 10, 12, 255, 84, 70,
442 127, 13, 89, 249, 9, 57, 165, 220 }
443 }, {
444 24,
445 { 72, 211, 143, 117, 230, 217, 29, 42,
446 229, 192, 247, 43, 120, 129, 135, 68,
447 14, 95, 80, 0, 212, 97, 141, 190 },
448 { 123, 5, 21, 7, 59, 51, 130, 31,
449 24, 112, 146, 218, 100, 84, 206, 177 },
450 { 92, 136, 4, 63, 57, 95, 100, 0,
451 150, 130, 130, 16, 193, 111, 219, 133 }
452 }, {
453 32,
454 { 243, 168, 141, 254, 190, 242, 235, 113,
455 255, 160, 208, 59, 117, 6, 140, 126,
456 135, 120, 115, 77, 208, 190, 130, 190,
457 219, 194, 70, 65, 43, 140, 250, 48 },
458 { 127, 112, 240, 167, 84, 134, 50, 149,
459 170, 91, 104, 19, 11, 230, 252, 245 },
460 { 88, 11, 25, 36, 172, 229, 202, 213,
461 170, 65, 105, 153, 220, 104, 153, 138 }
462 }
463 };
464
465 unsigned char tmp[2][16];
466 symmetric_key skey;
467 int err, i, y;
468
469 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
470 if ((err = saferp_setup(tests[i].key, tests[i].keylen, 0, &skey)) != CRYPT_OK) {
471 return err;
472 }
473 saferp_ecb_encrypt(tests[i].pt, tmp[0], &skey);
474 saferp_ecb_decrypt(tmp[0], tmp[1], &skey);
475
476 /* compare */
477 if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) {
478 return CRYPT_FAIL_TESTVECTOR;
479 }
480
481 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
482 for (y = 0; y < 16; y++) tmp[0][y] = 0;
483 for (y = 0; y < 1000; y++) saferp_ecb_encrypt(tmp[0], tmp[0], &skey);
484 for (y = 0; y < 1000; y++) saferp_ecb_decrypt(tmp[0], tmp[0], &skey);
485 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
486 }
487
488 return CRYPT_OK;
489 #endif
490 }
491
492 int saferp_keysize(int *desired_keysize)
493 {
494 _ARGCHK(desired_keysize != NULL);
495
496 if (*desired_keysize < 16)
497 return CRYPT_INVALID_KEYSIZE;
498 if (*desired_keysize < 24) {
499 *desired_keysize = 16;
500 } else if (*desired_keysize < 32) {
501 *desired_keysize = 24;
502 } else {
503 *desired_keysize = 32;
504 }
505 return CRYPT_OK;
506 }
507
508 #endif
509
510