Mercurial > dropbear
comparison twofish.c @ 0:d7da3b1e1540 libtomcrypt
put back the 0.95 makefile which was inadvertently merged over
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:21:40 +0000 |
parents | |
children | 8fc624ea2521 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d7da3b1e1540 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 | |
12 /* Implementation of Twofish by Tom St Denis */ | |
13 #include "mycrypt.h" | |
14 | |
15 #ifdef TWOFISH | |
16 | |
17 /* first TWOFISH_ALL_TABLES must ensure TWOFISH_TABLES is defined */ | |
18 #ifdef TWOFISH_ALL_TABLES | |
19 #ifndef TWOFISH_TABLES | |
20 #define TWOFISH_TABLES | |
21 #endif | |
22 #endif | |
23 | |
24 const struct _cipher_descriptor twofish_desc = | |
25 { | |
26 "twofish", | |
27 7, | |
28 16, 32, 16, 16, | |
29 &twofish_setup, | |
30 &twofish_ecb_encrypt, | |
31 &twofish_ecb_decrypt, | |
32 &twofish_test, | |
33 &twofish_keysize | |
34 }; | |
35 | |
36 /* the two polynomials */ | |
37 #define MDS_POLY 0x169 | |
38 #define RS_POLY 0x14D | |
39 | |
40 /* The 4x4 MDS Linear Transform */ | |
41 static const unsigned char MDS[4][4] = { | |
42 { 0x01, 0xEF, 0x5B, 0x5B }, | |
43 { 0x5B, 0xEF, 0xEF, 0x01 }, | |
44 { 0xEF, 0x5B, 0x01, 0xEF }, | |
45 { 0xEF, 0x01, 0xEF, 0x5B } | |
46 }; | |
47 | |
48 /* The 4x8 RS Linear Transform */ | |
49 static const unsigned char RS[4][8] = { | |
50 { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E }, | |
51 { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 }, | |
52 { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 }, | |
53 { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 } | |
54 }; | |
55 | |
56 /* sbox usage orderings */ | |
57 static const unsigned char qord[4][5] = { | |
58 { 1, 1, 0, 0, 1 }, | |
59 { 0, 1, 1, 0, 0 }, | |
60 { 0, 0, 0, 1, 1 }, | |
61 { 1, 0, 1, 1, 0 } | |
62 }; | |
63 | |
64 #ifdef TWOFISH_TABLES | |
65 | |
66 #include "twofish_tab.c" | |
67 | |
68 #define sbox(i, x) ((ulong32)SBOX[i][(x)&255]) | |
69 | |
70 #else | |
71 | |
72 /* The Q-box tables */ | |
73 static const unsigned char qbox[2][4][16] = { | |
74 { | |
75 { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 }, | |
76 { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD }, | |
77 { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 }, | |
78 { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA } | |
79 }, | |
80 { | |
81 { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 }, | |
82 { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 }, | |
83 { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF }, | |
84 { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA } | |
85 } | |
86 }; | |
87 | |
88 /* computes S_i[x] */ | |
89 #ifdef CLEAN_STACK | |
90 static ulong32 _sbox(int i, ulong32 x) | |
91 #else | |
92 static ulong32 sbox(int i, ulong32 x) | |
93 #endif | |
94 { | |
95 unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y; | |
96 | |
97 /* a0,b0 = [x/16], x mod 16 */ | |
98 a0 = (unsigned char)((x>>4)&15); | |
99 b0 = (unsigned char)((x)&15); | |
100 | |
101 /* a1 = a0 ^ b0 */ | |
102 a1 = a0 ^ b0; | |
103 | |
104 /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */ | |
105 b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15; | |
106 | |
107 /* a2,b2 = t0[a1], t1[b1] */ | |
108 a2 = qbox[i][0][(int)a1]; | |
109 b2 = qbox[i][1][(int)b1]; | |
110 | |
111 /* a3 = a2 ^ b2 */ | |
112 a3 = a2 ^ b2; | |
113 | |
114 /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */ | |
115 b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15; | |
116 | |
117 /* a4,b4 = t2[a3], t3[b3] */ | |
118 a4 = qbox[i][2][(int)a3]; | |
119 b4 = qbox[i][3][(int)b3]; | |
120 | |
121 /* y = 16b4 + a4 */ | |
122 y = (b4 << 4) + a4; | |
123 | |
124 /* return result */ | |
125 return (ulong32)y; | |
126 } | |
127 | |
128 #ifdef CLEAN_STACK | |
129 static ulong32 sbox(int i, ulong32 x) | |
130 { | |
131 ulong32 y; | |
132 y = _sbox(i, x); | |
133 burn_stack(sizeof(unsigned char) * 11); | |
134 return y; | |
135 } | |
136 #endif /* CLEAN_STACK */ | |
137 | |
138 #endif /* TWOFISH_TABLES */ | |
139 | |
140 /* computes ab mod p */ | |
141 static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p) | |
142 { | |
143 ulong32 result, B[2], P[2]; | |
144 | |
145 P[1] = p; | |
146 B[1] = b; | |
147 result = P[0] = B[0] = 0; | |
148 | |
149 /* unrolled branchless GF multiplier */ | |
150 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
151 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
152 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
153 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
154 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
155 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
156 result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); | |
157 result ^= B[a&1]; | |
158 | |
159 return result; | |
160 } | |
161 | |
162 /* computes [y0 y1 y2 y3] = MDS . [x0] */ | |
163 #ifndef TWOFISH_TABLES | |
164 static ulong32 mds_column_mult(unsigned char in, int col) | |
165 { | |
166 ulong32 x01, x5B, xEF; | |
167 | |
168 x01 = in; | |
169 x5B = gf_mult(in, 0x5B, MDS_POLY); | |
170 xEF = gf_mult(in, 0xEF, MDS_POLY); | |
171 | |
172 switch (col) { | |
173 case 0: | |
174 return (x01 << 0 ) | | |
175 (x5B << 8 ) | | |
176 (xEF << 16) | | |
177 (xEF << 24); | |
178 case 1: | |
179 return (xEF << 0 ) | | |
180 (xEF << 8 ) | | |
181 (x5B << 16) | | |
182 (x01 << 24); | |
183 case 2: | |
184 return (x5B << 0 ) | | |
185 (xEF << 8 ) | | |
186 (x01 << 16) | | |
187 (xEF << 24); | |
188 case 3: | |
189 return (x5B << 0 ) | | |
190 (x01 << 8 ) | | |
191 (xEF << 16) | | |
192 (x5B << 24); | |
193 } | |
194 /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */ | |
195 return 0; | |
196 } | |
197 | |
198 #else /* !TWOFISH_TABLES */ | |
199 | |
200 #define mds_column_mult(x, i) mds_tab[i][x] | |
201 | |
202 #endif /* TWOFISH_TABLES */ | |
203 | |
204 /* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */ | |
205 static void mds_mult(const unsigned char *in, unsigned char *out) | |
206 { | |
207 int x; | |
208 ulong32 tmp; | |
209 for (tmp = x = 0; x < 4; x++) { | |
210 tmp ^= mds_column_mult(in[x], x); | |
211 } | |
212 STORE32L(tmp, out); | |
213 } | |
214 | |
215 #ifdef TWOFISH_ALL_TABLES | |
216 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ | |
217 static void rs_mult(const unsigned char *in, unsigned char *out) | |
218 { | |
219 ulong32 tmp; | |
220 tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^ | |
221 rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]]; | |
222 STORE32L(tmp, out); | |
223 } | |
224 | |
225 #else /* !TWOFISH_ALL_TABLES */ | |
226 | |
227 /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ | |
228 static void rs_mult(const unsigned char *in, unsigned char *out) | |
229 { | |
230 int x, y; | |
231 for (x = 0; x < 4; x++) { | |
232 out[x] = 0; | |
233 for (y = 0; y < 8; y++) { | |
234 out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY); | |
235 } | |
236 } | |
237 } | |
238 | |
239 #endif | |
240 | |
241 /* computes h(x) */ | |
242 static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset) | |
243 { | |
244 int x; | |
245 unsigned char y[4]; | |
246 for (x = 0; x < 4; x++) { | |
247 y[x] = in[x]; | |
248 } | |
249 switch (k) { | |
250 case 4: | |
251 y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]); | |
252 y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]); | |
253 y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]); | |
254 y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]); | |
255 case 3: | |
256 y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]); | |
257 y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]); | |
258 y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]); | |
259 y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]); | |
260 case 2: | |
261 y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0])); | |
262 y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1])); | |
263 y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2])); | |
264 y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3])); | |
265 } | |
266 mds_mult(y, out); | |
267 } | |
268 | |
269 #ifndef TWOFISH_SMALL | |
270 | |
271 /* for GCC we don't use pointer aliases */ | |
272 #if defined(__GNUC__) | |
273 #define S1 key->twofish.S[0] | |
274 #define S2 key->twofish.S[1] | |
275 #define S3 key->twofish.S[2] | |
276 #define S4 key->twofish.S[3] | |
277 #endif | |
278 | |
279 /* the G function */ | |
280 #define g_func(x, dum) (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)]) | |
281 #define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)]) | |
282 | |
283 #else | |
284 | |
285 #ifdef CLEAN_STACK | |
286 static ulong32 _g_func(ulong32 x, symmetric_key *key) | |
287 #else | |
288 static ulong32 g_func(ulong32 x, symmetric_key *key) | |
289 #endif | |
290 { | |
291 unsigned char g, i, y, z; | |
292 ulong32 res; | |
293 | |
294 res = 0; | |
295 for (y = 0; y < 4; y++) { | |
296 z = key->twofish.start; | |
297 | |
298 /* do unkeyed substitution */ | |
299 g = sbox(qord[y][z++], (x >> (8*y)) & 255); | |
300 | |
301 /* first subkey */ | |
302 i = 0; | |
303 | |
304 /* do key mixing+sbox until z==5 */ | |
305 while (z != 5) { | |
306 g = g ^ key->twofish.S[4*i++ + y]; | |
307 g = sbox(qord[y][z++], g); | |
308 } | |
309 | |
310 /* multiply g by a column of the MDS */ | |
311 res ^= mds_column_mult(g, y); | |
312 } | |
313 return res; | |
314 } | |
315 | |
316 #define g1_func(x, key) g_func(ROL(x, 8), key) | |
317 | |
318 #ifdef CLEAN_STACK | |
319 static ulong32 g_func(ulong32 x, symmetric_key *key) | |
320 { | |
321 ulong32 y; | |
322 y = _g_func(x, key); | |
323 burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32)); | |
324 return y; | |
325 } | |
326 #endif /* CLEAN_STACK */ | |
327 | |
328 #endif /* TWOFISH_SMALL */ | |
329 | |
330 #ifdef CLEAN_STACK | |
331 static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
332 #else | |
333 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
334 #endif | |
335 { | |
336 #ifndef TWOFISH_SMALL | |
337 unsigned char S[4*4], tmpx0, tmpx1; | |
338 #endif | |
339 int k, x, y; | |
340 unsigned char tmp[4], tmp2[4], M[8*4]; | |
341 ulong32 A, B; | |
342 | |
343 _ARGCHK(key != NULL); | |
344 _ARGCHK(skey != NULL); | |
345 | |
346 /* invalid arguments? */ | |
347 if (num_rounds != 16 && num_rounds != 0) { | |
348 return CRYPT_INVALID_ROUNDS; | |
349 } | |
350 | |
351 if (keylen != 16 && keylen != 24 && keylen != 32) { | |
352 return CRYPT_INVALID_KEYSIZE; | |
353 } | |
354 | |
355 /* k = keysize/64 [but since our keysize is in bytes...] */ | |
356 k = keylen / 8; | |
357 | |
358 /* copy the key into M */ | |
359 for (x = 0; x < keylen; x++) { | |
360 M[x] = key[x] & 255; | |
361 } | |
362 | |
363 /* create the S[..] words */ | |
364 #ifndef TWOFISH_SMALL | |
365 for (x = 0; x < k; x++) { | |
366 rs_mult(M+(x*8), S+(x*4)); | |
367 } | |
368 #else | |
369 for (x = 0; x < k; x++) { | |
370 rs_mult(M+(x*8), skey->twofish.S+(x*4)); | |
371 } | |
372 #endif | |
373 | |
374 /* make subkeys */ | |
375 for (x = 0; x < 20; x++) { | |
376 /* A = h(p * 2x, Me) */ | |
377 for (y = 0; y < 4; y++) { | |
378 tmp[y] = x+x; | |
379 } | |
380 h_func(tmp, tmp2, M, k, 0); | |
381 LOAD32L(A, tmp2); | |
382 | |
383 /* B = ROL(h(p * (2x + 1), Mo), 8) */ | |
384 for (y = 0; y < 4; y++) { | |
385 tmp[y] = (unsigned char)(x+x+1); | |
386 } | |
387 h_func(tmp, tmp2, M, k, 1); | |
388 LOAD32L(B, tmp2); | |
389 B = ROL(B, 8); | |
390 | |
391 /* K[2i] = A + B */ | |
392 skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL; | |
393 | |
394 /* K[2i+1] = (A + 2B) <<< 9 */ | |
395 skey->twofish.K[x+x+1] = ROL(B + B + A, 9); | |
396 } | |
397 | |
398 #ifndef TWOFISH_SMALL | |
399 /* make the sboxes (large ram variant) */ | |
400 if (k == 2) { | |
401 for (x = 0; x < 256; x++) { | |
402 tmpx0 = sbox(0, x); | |
403 tmpx1 = sbox(1, x); | |
404 skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0); | |
405 skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1); | |
406 skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2); | |
407 skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3); | |
408 } | |
409 } else if (k == 3) { | |
410 for (x = 0; x < 256; x++) { | |
411 tmpx0 = sbox(0, x); | |
412 tmpx1 = sbox(1, x); | |
413 skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0); | |
414 skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1); | |
415 skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2); | |
416 skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3); | |
417 } | |
418 } else { | |
419 for (x = 0; x < 256; x++) { | |
420 tmpx0 = sbox(0, x); | |
421 tmpx1 = sbox(1, x); | |
422 skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0); | |
423 skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1); | |
424 skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2); | |
425 skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3); | |
426 } | |
427 } | |
428 #else | |
429 /* where to start in the sbox layers */ | |
430 /* small ram variant */ | |
431 switch (k) { | |
432 case 4 : skey->twofish.start = 0; break; | |
433 case 3 : skey->twofish.start = 1; break; | |
434 default: skey->twofish.start = 2; break; | |
435 } | |
436 #endif | |
437 return CRYPT_OK; | |
438 } | |
439 | |
440 #ifdef CLEAN_STACK | |
441 int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
442 { | |
443 int x; | |
444 x = _twofish_setup(key, keylen, num_rounds, skey); | |
445 burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2); | |
446 return x; | |
447 } | |
448 #endif | |
449 | |
450 #ifdef CLEAN_STACK | |
451 static void _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) | |
452 #else | |
453 void twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) | |
454 #endif | |
455 { | |
456 ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; | |
457 int r; | |
458 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
459 ulong32 *S1, *S2, *S3, *S4; | |
460 #endif | |
461 | |
462 _ARGCHK(pt != NULL); | |
463 _ARGCHK(ct != NULL); | |
464 _ARGCHK(key != NULL); | |
465 | |
466 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
467 S1 = key->twofish.S[0]; | |
468 S2 = key->twofish.S[1]; | |
469 S3 = key->twofish.S[2]; | |
470 S4 = key->twofish.S[3]; | |
471 #endif | |
472 | |
473 LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]); | |
474 LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]); | |
475 a ^= key->twofish.K[0]; | |
476 b ^= key->twofish.K[1]; | |
477 c ^= key->twofish.K[2]; | |
478 d ^= key->twofish.K[3]; | |
479 | |
480 k = key->twofish.K + 8; | |
481 for (r = 8; r != 0; --r) { | |
482 t2 = g1_func(b, key); | |
483 t1 = g_func(a, key) + t2; | |
484 c = ROR(c ^ (t1 + k[0]), 1); | |
485 d = ROL(d, 1) ^ (t2 + t1 + k[1]); | |
486 | |
487 t2 = g1_func(d, key); | |
488 t1 = g_func(c, key) + t2; | |
489 a = ROR(a ^ (t1 + k[2]), 1); | |
490 b = ROL(b, 1) ^ (t2 + t1 + k[3]); | |
491 k += 4; | |
492 } | |
493 | |
494 /* output with "undo last swap" */ | |
495 ta = c ^ key->twofish.K[4]; | |
496 tb = d ^ key->twofish.K[5]; | |
497 tc = a ^ key->twofish.K[6]; | |
498 td = b ^ key->twofish.K[7]; | |
499 | |
500 /* store output */ | |
501 STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]); | |
502 STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]); | |
503 } | |
504 | |
505 #ifdef CLEAN_STACK | |
506 void twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) | |
507 { | |
508 _twofish_ecb_encrypt(pt, ct, key); | |
509 burn_stack(sizeof(ulong32) * 10 + sizeof(int)); | |
510 } | |
511 #endif | |
512 | |
513 #ifdef CLEAN_STACK | |
514 static void _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) | |
515 #else | |
516 void twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) | |
517 #endif | |
518 { | |
519 ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; | |
520 int r; | |
521 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
522 ulong32 *S1, *S2, *S3, *S4; | |
523 #endif | |
524 | |
525 _ARGCHK(pt != NULL); | |
526 _ARGCHK(ct != NULL); | |
527 _ARGCHK(key != NULL); | |
528 | |
529 #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) | |
530 S1 = key->twofish.S[0]; | |
531 S2 = key->twofish.S[1]; | |
532 S3 = key->twofish.S[2]; | |
533 S4 = key->twofish.S[3]; | |
534 #endif | |
535 | |
536 /* load input */ | |
537 LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]); | |
538 LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]); | |
539 | |
540 /* undo undo final swap */ | |
541 a = tc ^ key->twofish.K[6]; | |
542 b = td ^ key->twofish.K[7]; | |
543 c = ta ^ key->twofish.K[4]; | |
544 d = tb ^ key->twofish.K[5]; | |
545 | |
546 k = key->twofish.K + 36; | |
547 for (r = 8; r != 0; --r) { | |
548 t2 = g1_func(d, key); | |
549 t1 = g_func(c, key) + t2; | |
550 a = ROL(a, 1) ^ (t1 + k[2]); | |
551 b = ROR(b ^ (t2 + t1 + k[3]), 1); | |
552 | |
553 t2 = g1_func(b, key); | |
554 t1 = g_func(a, key) + t2; | |
555 c = ROL(c, 1) ^ (t1 + k[0]); | |
556 d = ROR(d ^ (t2 + t1 + k[1]), 1); | |
557 k -= 4; | |
558 } | |
559 | |
560 /* pre-white */ | |
561 a ^= key->twofish.K[0]; | |
562 b ^= key->twofish.K[1]; | |
563 c ^= key->twofish.K[2]; | |
564 d ^= key->twofish.K[3]; | |
565 | |
566 /* store */ | |
567 STORE32L(a, &pt[0]); STORE32L(b, &pt[4]); | |
568 STORE32L(c, &pt[8]); STORE32L(d, &pt[12]); | |
569 } | |
570 | |
571 #ifdef CLEAN_STACK | |
572 void twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) | |
573 { | |
574 _twofish_ecb_decrypt(ct, pt, key); | |
575 burn_stack(sizeof(ulong32) * 10 + sizeof(int)); | |
576 } | |
577 #endif | |
578 | |
579 int twofish_test(void) | |
580 { | |
581 #ifndef LTC_TEST | |
582 return CRYPT_NOP; | |
583 #else | |
584 static const struct { | |
585 int keylen; | |
586 unsigned char key[32], pt[16], ct[16]; | |
587 } tests[] = { | |
588 { 16, | |
589 { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, | |
590 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A }, | |
591 { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, | |
592 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 }, | |
593 { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, | |
594 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 } | |
595 }, { | |
596 24, | |
597 { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36, | |
598 0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88, | |
599 0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 }, | |
600 { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5, | |
601 0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 }, | |
602 { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45, | |
603 0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 } | |
604 }, { | |
605 32, | |
606 { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, | |
607 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D, | |
608 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, | |
609 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F }, | |
610 { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, | |
611 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 }, | |
612 { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, | |
613 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA } | |
614 } | |
615 }; | |
616 | |
617 | |
618 symmetric_key key; | |
619 unsigned char tmp[2][16]; | |
620 int err, i, y; | |
621 | |
622 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { | |
623 if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { | |
624 return err; | |
625 } | |
626 twofish_ecb_encrypt(tests[i].pt, tmp[0], &key); | |
627 twofish_ecb_decrypt(tmp[0], tmp[1], &key); | |
628 if (memcmp(tmp[0], tests[i].ct, 16) != 0 || memcmp(tmp[1], tests[i].pt, 16) != 0) { | |
629 return CRYPT_FAIL_TESTVECTOR; | |
630 } | |
631 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ | |
632 for (y = 0; y < 16; y++) tmp[0][y] = 0; | |
633 for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key); | |
634 for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key); | |
635 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; | |
636 } | |
637 return CRYPT_OK; | |
638 #endif | |
639 } | |
640 | |
641 int twofish_keysize(int *desired_keysize) | |
642 { | |
643 _ARGCHK(desired_keysize); | |
644 if (*desired_keysize < 16) | |
645 return CRYPT_INVALID_KEYSIZE; | |
646 if (*desired_keysize < 24) { | |
647 *desired_keysize = 16; | |
648 return CRYPT_OK; | |
649 } else if (*desired_keysize < 32) { | |
650 *desired_keysize = 24; | |
651 return CRYPT_OK; | |
652 } else { | |
653 *desired_keysize = 32; | |
654 return CRYPT_OK; | |
655 } | |
656 } | |
657 | |
658 #endif | |
659 | |
660 | |
661 |