Mercurial > dropbear
comparison xtea.c @ 0:d7da3b1e1540 libtomcrypt
put back the 0.95 makefile which was inadvertently merged over
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:21:40 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d7da3b1e1540 |
---|---|
1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis | |
2 * | |
3 * LibTomCrypt is a library that provides various cryptographic | |
4 * algorithms in a highly modular and flexible manner. | |
5 * | |
6 * The library is free for all purposes without any express | |
7 * guarantee it works. | |
8 * | |
9 * Tom St Denis, [email protected], http://libtomcrypt.org | |
10 */ | |
11 | |
12 #include "mycrypt.h" | |
13 | |
14 #ifdef XTEA | |
15 | |
16 const struct _cipher_descriptor xtea_desc = | |
17 { | |
18 "xtea", | |
19 1, | |
20 16, 16, 8, 32, | |
21 &xtea_setup, | |
22 &xtea_ecb_encrypt, | |
23 &xtea_ecb_decrypt, | |
24 &xtea_test, | |
25 &xtea_keysize | |
26 }; | |
27 | |
28 int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) | |
29 { | |
30 unsigned long x, sum, K[4]; | |
31 | |
32 _ARGCHK(key != NULL); | |
33 _ARGCHK(skey != NULL); | |
34 | |
35 /* check arguments */ | |
36 if (keylen != 16) { | |
37 return CRYPT_INVALID_KEYSIZE; | |
38 } | |
39 | |
40 if (num_rounds != 0 && num_rounds != 32) { | |
41 return CRYPT_INVALID_ROUNDS; | |
42 } | |
43 | |
44 /* load key */ | |
45 LOAD32L(K[0], key+0); | |
46 LOAD32L(K[1], key+4); | |
47 LOAD32L(K[2], key+8); | |
48 LOAD32L(K[3], key+12); | |
49 | |
50 for (x = sum = 0; x < 32; x++) { | |
51 skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL; | |
52 sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL; | |
53 skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL; | |
54 } | |
55 | |
56 #ifdef CLEAN_STACK | |
57 zeromem(&K, sizeof(K)); | |
58 #endif | |
59 | |
60 return CRYPT_OK; | |
61 } | |
62 | |
63 void xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key) | |
64 { | |
65 unsigned long y, z; | |
66 int r; | |
67 | |
68 _ARGCHK(pt != NULL); | |
69 _ARGCHK(ct != NULL); | |
70 _ARGCHK(key != NULL); | |
71 | |
72 LOAD32L(y, &pt[0]); | |
73 LOAD32L(z, &pt[4]); | |
74 for (r = 0; r < 32; r += 4) { | |
75 y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r])) & 0xFFFFFFFFUL; | |
76 z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r])) & 0xFFFFFFFFUL; | |
77 | |
78 y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+1])) & 0xFFFFFFFFUL; | |
79 z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+1])) & 0xFFFFFFFFUL; | |
80 | |
81 y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+2])) & 0xFFFFFFFFUL; | |
82 z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+2])) & 0xFFFFFFFFUL; | |
83 | |
84 y = (y + ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r+3])) & 0xFFFFFFFFUL; | |
85 z = (z + ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r+3])) & 0xFFFFFFFFUL; | |
86 } | |
87 STORE32L(y, &ct[0]); | |
88 STORE32L(z, &ct[4]); | |
89 } | |
90 | |
91 void xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key) | |
92 { | |
93 unsigned long y, z; | |
94 int r; | |
95 | |
96 _ARGCHK(pt != NULL); | |
97 _ARGCHK(ct != NULL); | |
98 _ARGCHK(key != NULL); | |
99 | |
100 LOAD32L(y, &ct[0]); | |
101 LOAD32L(z, &ct[4]); | |
102 for (r = 31; r >= 0; r -= 4) { | |
103 z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r])) & 0xFFFFFFFFUL; | |
104 y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r])) & 0xFFFFFFFFUL; | |
105 | |
106 z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-1])) & 0xFFFFFFFFUL; | |
107 y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-1])) & 0xFFFFFFFFUL; | |
108 | |
109 z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-2])) & 0xFFFFFFFFUL; | |
110 y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-2])) & 0xFFFFFFFFUL; | |
111 | |
112 z = (z - ((((y<<4)^(y>>5)) + y) ^ key->xtea.B[r-3])) & 0xFFFFFFFFUL; | |
113 y = (y - ((((z<<4)^(z>>5)) + z) ^ key->xtea.A[r-3])) & 0xFFFFFFFFUL; | |
114 } | |
115 STORE32L(y, &pt[0]); | |
116 STORE32L(z, &pt[4]); | |
117 } | |
118 | |
119 int xtea_test(void) | |
120 { | |
121 #ifndef LTC_TEST | |
122 return CRYPT_NOP; | |
123 #else | |
124 static const unsigned char key[16] = | |
125 { 0x78, 0x56, 0x34, 0x12, 0xf0, 0xcd, 0xcb, 0x9a, | |
126 0x48, 0x37, 0x26, 0x15, 0xc0, 0xbf, 0xae, 0x9d }; | |
127 static const unsigned char pt[8] = | |
128 { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 }; | |
129 static const unsigned char ct[8] = | |
130 { 0x75, 0xd7, 0xc5, 0xbf, 0xcf, 0x58, 0xc9, 0x3f }; | |
131 unsigned char tmp[2][8]; | |
132 symmetric_key skey; | |
133 int err, y; | |
134 | |
135 if ((err = xtea_setup(key, 16, 0, &skey)) != CRYPT_OK) { | |
136 return err; | |
137 } | |
138 xtea_ecb_encrypt(pt, tmp[0], &skey); | |
139 xtea_ecb_decrypt(tmp[0], tmp[1], &skey); | |
140 | |
141 if (memcmp(tmp[0], ct, 8) != 0 || memcmp(tmp[1], pt, 8) != 0) { | |
142 return CRYPT_FAIL_TESTVECTOR; | |
143 } | |
144 | |
145 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ | |
146 for (y = 0; y < 8; y++) tmp[0][y] = 0; | |
147 for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey); | |
148 for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey); | |
149 for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; | |
150 | |
151 return CRYPT_OK; | |
152 #endif | |
153 } | |
154 | |
155 int xtea_keysize(int *desired_keysize) | |
156 { | |
157 _ARGCHK(desired_keysize != NULL); | |
158 if (*desired_keysize < 16) { | |
159 return CRYPT_INVALID_KEYSIZE; | |
160 } | |
161 *desired_keysize = 16; | |
162 return CRYPT_OK; | |
163 } | |
164 | |
165 | |
166 #endif | |
167 | |
168 | |
169 |