Mercurial > dropbear
comparison poster.tex @ 19:e1037a1e12e7 libtommath-orig
0.30 release of LibTomMath
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Tue, 15 Jun 2004 14:42:57 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2:86e0b50a9b58 | 19:e1037a1e12e7 |
---|---|
1 \documentclass[landscape,11pt]{article} | |
2 \usepackage{amsmath, amssymb} | |
3 \usepackage{hyperref} | |
4 \begin{document} | |
5 \hspace*{-3in} | |
6 \begin{tabular}{llllll} | |
7 $c = a + b$ & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$ & {\tt mp\_mul\_2(\&a, \&b)} & \\ | |
8 $c = a - b$ & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\ | |
9 $c = ab $ & {\tt mp\_mul(\&a, \&b, \&c)} & $c = 2^ba$ & {\tt mp\_mul\_2d(\&a, b, \&c)} \\ | |
10 $b = a^2 $ & {\tt mp\_sqr(\&a, \&b)} & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\ | |
11 $c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $ & {\tt mp\_mod\_2d(\&a, b, \&c)} \\ | |
12 && \\ | |
13 $a = b $ & {\tt mp\_set\_int(\&a, b)} & $c = a \vee b$ & {\tt mp\_or(\&a, \&b, \&c)} \\ | |
14 $b = a $ & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$ & {\tt mp\_and(\&a, \&b, \&c)} \\ | |
15 && $c = a \oplus b$ & {\tt mp\_xor(\&a, \&b, \&c)} \\ | |
16 & \\ | |
17 $b = -a $ & {\tt mp\_neg(\&a, \&b)} & $d = a + b \mod c$ & {\tt mp\_addmod(\&a, \&b, \&c, \&d)} \\ | |
18 $b = |a| $ & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$ & {\tt mp\_submod(\&a, \&b, \&c, \&d)} \\ | |
19 && $d = ab \mod c$ & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)} \\ | |
20 Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$ & {\tt mp\_sqrmod(\&a, \&b, \&c)} \\ | |
21 Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$ & {\tt mp\_invmod(\&a, \&b, \&c)} \\ | |
22 Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\ | |
23 Is Odd ? & {\tt mp\_isodd(\&a)} \\ | |
24 &\\ | |
25 $\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\ | |
26 $buf \leftarrow a$ & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\ | |
27 $a \leftarrow buf[0..len-1]$ & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\ | |
28 &\\ | |
29 $b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\ | |
30 $c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\ | |
31 &\\ | |
32 Greater Than & MP\_GT & Equal To & MP\_EQ \\ | |
33 Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\ | |
34 \end{tabular} | |
35 \end{document} |