Mercurial > dropbear
comparison libtommath/bn_fast_mp_invmod.c @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
283:bd240aa12ba7 | 284:eed26cff980b |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_FAST_MP_INVMOD_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* computes the modular inverse via binary extended euclidean algorithm, | |
19 * that is c = 1/a mod b | |
20 * | |
21 * Based on slow invmod except this is optimized for the case where b is | |
22 * odd as per HAC Note 14.64 on pp. 610 | |
23 */ | |
24 int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) | |
25 { | |
26 mp_int x, y, u, v, B, D; | |
27 int res, neg; | |
28 | |
29 /* 2. [modified] b must be odd */ | |
30 if (mp_iseven (b) == 1) { | |
31 return MP_VAL; | |
32 } | |
33 | |
34 /* init all our temps */ | |
35 if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { | |
36 return res; | |
37 } | |
38 | |
39 /* x == modulus, y == value to invert */ | |
40 if ((res = mp_copy (b, &x)) != MP_OKAY) { | |
41 goto LBL_ERR; | |
42 } | |
43 | |
44 /* we need y = |a| */ | |
45 if ((res = mp_mod (a, b, &y)) != MP_OKAY) { | |
46 goto LBL_ERR; | |
47 } | |
48 | |
49 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | |
50 if ((res = mp_copy (&x, &u)) != MP_OKAY) { | |
51 goto LBL_ERR; | |
52 } | |
53 if ((res = mp_copy (&y, &v)) != MP_OKAY) { | |
54 goto LBL_ERR; | |
55 } | |
56 mp_set (&D, 1); | |
57 | |
58 top: | |
59 /* 4. while u is even do */ | |
60 while (mp_iseven (&u) == 1) { | |
61 /* 4.1 u = u/2 */ | |
62 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { | |
63 goto LBL_ERR; | |
64 } | |
65 /* 4.2 if B is odd then */ | |
66 if (mp_isodd (&B) == 1) { | |
67 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { | |
68 goto LBL_ERR; | |
69 } | |
70 } | |
71 /* B = B/2 */ | |
72 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { | |
73 goto LBL_ERR; | |
74 } | |
75 } | |
76 | |
77 /* 5. while v is even do */ | |
78 while (mp_iseven (&v) == 1) { | |
79 /* 5.1 v = v/2 */ | |
80 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { | |
81 goto LBL_ERR; | |
82 } | |
83 /* 5.2 if D is odd then */ | |
84 if (mp_isodd (&D) == 1) { | |
85 /* D = (D-x)/2 */ | |
86 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { | |
87 goto LBL_ERR; | |
88 } | |
89 } | |
90 /* D = D/2 */ | |
91 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { | |
92 goto LBL_ERR; | |
93 } | |
94 } | |
95 | |
96 /* 6. if u >= v then */ | |
97 if (mp_cmp (&u, &v) != MP_LT) { | |
98 /* u = u - v, B = B - D */ | |
99 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { | |
100 goto LBL_ERR; | |
101 } | |
102 | |
103 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { | |
104 goto LBL_ERR; | |
105 } | |
106 } else { | |
107 /* v - v - u, D = D - B */ | |
108 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { | |
109 goto LBL_ERR; | |
110 } | |
111 | |
112 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { | |
113 goto LBL_ERR; | |
114 } | |
115 } | |
116 | |
117 /* if not zero goto step 4 */ | |
118 if (mp_iszero (&u) == 0) { | |
119 goto top; | |
120 } | |
121 | |
122 /* now a = C, b = D, gcd == g*v */ | |
123 | |
124 /* if v != 1 then there is no inverse */ | |
125 if (mp_cmp_d (&v, 1) != MP_EQ) { | |
126 res = MP_VAL; | |
127 goto LBL_ERR; | |
128 } | |
129 | |
130 /* b is now the inverse */ | |
131 neg = a->sign; | |
132 while (D.sign == MP_NEG) { | |
133 if ((res = mp_add (&D, b, &D)) != MP_OKAY) { | |
134 goto LBL_ERR; | |
135 } | |
136 } | |
137 mp_exch (&D, c); | |
138 c->sign = neg; | |
139 res = MP_OKAY; | |
140 | |
141 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); | |
142 return res; | |
143 } | |
144 #endif |