Mercurial > dropbear
comparison libtommath/bn_mp_gcd.c @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
283:bd240aa12ba7 | 284:eed26cff980b |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_GCD_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* Greatest Common Divisor using the binary method */ | |
19 int mp_gcd (mp_int * a, mp_int * b, mp_int * c) | |
20 { | |
21 mp_int u, v; | |
22 int k, u_lsb, v_lsb, res; | |
23 | |
24 /* either zero than gcd is the largest */ | |
25 if (mp_iszero (a) == 1 && mp_iszero (b) == 0) { | |
26 return mp_abs (b, c); | |
27 } | |
28 if (mp_iszero (a) == 0 && mp_iszero (b) == 1) { | |
29 return mp_abs (a, c); | |
30 } | |
31 | |
32 /* optimized. At this point if a == 0 then | |
33 * b must equal zero too | |
34 */ | |
35 if (mp_iszero (a) == 1) { | |
36 mp_zero(c); | |
37 return MP_OKAY; | |
38 } | |
39 | |
40 /* get copies of a and b we can modify */ | |
41 if ((res = mp_init_copy (&u, a)) != MP_OKAY) { | |
42 return res; | |
43 } | |
44 | |
45 if ((res = mp_init_copy (&v, b)) != MP_OKAY) { | |
46 goto LBL_U; | |
47 } | |
48 | |
49 /* must be positive for the remainder of the algorithm */ | |
50 u.sign = v.sign = MP_ZPOS; | |
51 | |
52 /* B1. Find the common power of two for u and v */ | |
53 u_lsb = mp_cnt_lsb(&u); | |
54 v_lsb = mp_cnt_lsb(&v); | |
55 k = MIN(u_lsb, v_lsb); | |
56 | |
57 if (k > 0) { | |
58 /* divide the power of two out */ | |
59 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { | |
60 goto LBL_V; | |
61 } | |
62 | |
63 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { | |
64 goto LBL_V; | |
65 } | |
66 } | |
67 | |
68 /* divide any remaining factors of two out */ | |
69 if (u_lsb != k) { | |
70 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { | |
71 goto LBL_V; | |
72 } | |
73 } | |
74 | |
75 if (v_lsb != k) { | |
76 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { | |
77 goto LBL_V; | |
78 } | |
79 } | |
80 | |
81 while (mp_iszero(&v) == 0) { | |
82 /* make sure v is the largest */ | |
83 if (mp_cmp_mag(&u, &v) == MP_GT) { | |
84 /* swap u and v to make sure v is >= u */ | |
85 mp_exch(&u, &v); | |
86 } | |
87 | |
88 /* subtract smallest from largest */ | |
89 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { | |
90 goto LBL_V; | |
91 } | |
92 | |
93 /* Divide out all factors of two */ | |
94 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { | |
95 goto LBL_V; | |
96 } | |
97 } | |
98 | |
99 /* multiply by 2**k which we divided out at the beginning */ | |
100 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { | |
101 goto LBL_V; | |
102 } | |
103 c->sign = MP_ZPOS; | |
104 res = MP_OKAY; | |
105 LBL_V:mp_clear (&u); | |
106 LBL_U:mp_clear (&v); | |
107 return res; | |
108 } | |
109 #endif |