Mercurial > dropbear
comparison libtommath/bn_mp_invmod_slow.c @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
283:bd240aa12ba7 | 284:eed26cff980b |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_INVMOD_SLOW_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* hac 14.61, pp608 */ | |
19 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) | |
20 { | |
21 mp_int x, y, u, v, A, B, C, D; | |
22 int res; | |
23 | |
24 /* b cannot be negative */ | |
25 if (b->sign == MP_NEG || mp_iszero(b) == 1) { | |
26 return MP_VAL; | |
27 } | |
28 | |
29 /* init temps */ | |
30 if ((res = mp_init_multi(&x, &y, &u, &v, | |
31 &A, &B, &C, &D, NULL)) != MP_OKAY) { | |
32 return res; | |
33 } | |
34 | |
35 /* x = a, y = b */ | |
36 if ((res = mp_mod(a, b, &x)) != MP_OKAY) { | |
37 goto LBL_ERR; | |
38 } | |
39 if ((res = mp_copy (b, &y)) != MP_OKAY) { | |
40 goto LBL_ERR; | |
41 } | |
42 | |
43 /* 2. [modified] if x,y are both even then return an error! */ | |
44 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { | |
45 res = MP_VAL; | |
46 goto LBL_ERR; | |
47 } | |
48 | |
49 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | |
50 if ((res = mp_copy (&x, &u)) != MP_OKAY) { | |
51 goto LBL_ERR; | |
52 } | |
53 if ((res = mp_copy (&y, &v)) != MP_OKAY) { | |
54 goto LBL_ERR; | |
55 } | |
56 mp_set (&A, 1); | |
57 mp_set (&D, 1); | |
58 | |
59 top: | |
60 /* 4. while u is even do */ | |
61 while (mp_iseven (&u) == 1) { | |
62 /* 4.1 u = u/2 */ | |
63 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { | |
64 goto LBL_ERR; | |
65 } | |
66 /* 4.2 if A or B is odd then */ | |
67 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { | |
68 /* A = (A+y)/2, B = (B-x)/2 */ | |
69 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { | |
70 goto LBL_ERR; | |
71 } | |
72 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { | |
73 goto LBL_ERR; | |
74 } | |
75 } | |
76 /* A = A/2, B = B/2 */ | |
77 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { | |
78 goto LBL_ERR; | |
79 } | |
80 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { | |
81 goto LBL_ERR; | |
82 } | |
83 } | |
84 | |
85 /* 5. while v is even do */ | |
86 while (mp_iseven (&v) == 1) { | |
87 /* 5.1 v = v/2 */ | |
88 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { | |
89 goto LBL_ERR; | |
90 } | |
91 /* 5.2 if C or D is odd then */ | |
92 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { | |
93 /* C = (C+y)/2, D = (D-x)/2 */ | |
94 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { | |
95 goto LBL_ERR; | |
96 } | |
97 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { | |
98 goto LBL_ERR; | |
99 } | |
100 } | |
101 /* C = C/2, D = D/2 */ | |
102 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { | |
103 goto LBL_ERR; | |
104 } | |
105 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { | |
106 goto LBL_ERR; | |
107 } | |
108 } | |
109 | |
110 /* 6. if u >= v then */ | |
111 if (mp_cmp (&u, &v) != MP_LT) { | |
112 /* u = u - v, A = A - C, B = B - D */ | |
113 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { | |
114 goto LBL_ERR; | |
115 } | |
116 | |
117 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { | |
118 goto LBL_ERR; | |
119 } | |
120 | |
121 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { | |
122 goto LBL_ERR; | |
123 } | |
124 } else { | |
125 /* v - v - u, C = C - A, D = D - B */ | |
126 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { | |
127 goto LBL_ERR; | |
128 } | |
129 | |
130 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { | |
131 goto LBL_ERR; | |
132 } | |
133 | |
134 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { | |
135 goto LBL_ERR; | |
136 } | |
137 } | |
138 | |
139 /* if not zero goto step 4 */ | |
140 if (mp_iszero (&u) == 0) | |
141 goto top; | |
142 | |
143 /* now a = C, b = D, gcd == g*v */ | |
144 | |
145 /* if v != 1 then there is no inverse */ | |
146 if (mp_cmp_d (&v, 1) != MP_EQ) { | |
147 res = MP_VAL; | |
148 goto LBL_ERR; | |
149 } | |
150 | |
151 /* if its too low */ | |
152 while (mp_cmp_d(&C, 0) == MP_LT) { | |
153 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { | |
154 goto LBL_ERR; | |
155 } | |
156 } | |
157 | |
158 /* too big */ | |
159 while (mp_cmp_mag(&C, b) != MP_LT) { | |
160 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { | |
161 goto LBL_ERR; | |
162 } | |
163 } | |
164 | |
165 /* C is now the inverse */ | |
166 mp_exch (&C, c); | |
167 res = MP_OKAY; | |
168 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); | |
169 return res; | |
170 } | |
171 #endif |