Mercurial > dropbear
comparison libtommath/bn_mp_karatsuba_sqr.c @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
283:bd240aa12ba7 | 284:eed26cff980b |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_KARATSUBA_SQR_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* Karatsuba squaring, computes b = a*a using three | |
19 * half size squarings | |
20 * | |
21 * See comments of karatsuba_mul for details. It | |
22 * is essentially the same algorithm but merely | |
23 * tuned to perform recursive squarings. | |
24 */ | |
25 int mp_karatsuba_sqr (mp_int * a, mp_int * b) | |
26 { | |
27 mp_int x0, x1, t1, t2, x0x0, x1x1; | |
28 int B, err; | |
29 | |
30 err = MP_MEM; | |
31 | |
32 /* min # of digits */ | |
33 B = a->used; | |
34 | |
35 /* now divide in two */ | |
36 B = B >> 1; | |
37 | |
38 /* init copy all the temps */ | |
39 if (mp_init_size (&x0, B) != MP_OKAY) | |
40 goto ERR; | |
41 if (mp_init_size (&x1, a->used - B) != MP_OKAY) | |
42 goto X0; | |
43 | |
44 /* init temps */ | |
45 if (mp_init_size (&t1, a->used * 2) != MP_OKAY) | |
46 goto X1; | |
47 if (mp_init_size (&t2, a->used * 2) != MP_OKAY) | |
48 goto T1; | |
49 if (mp_init_size (&x0x0, B * 2) != MP_OKAY) | |
50 goto T2; | |
51 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY) | |
52 goto X0X0; | |
53 | |
54 { | |
55 register int x; | |
56 register mp_digit *dst, *src; | |
57 | |
58 src = a->dp; | |
59 | |
60 /* now shift the digits */ | |
61 dst = x0.dp; | |
62 for (x = 0; x < B; x++) { | |
63 *dst++ = *src++; | |
64 } | |
65 | |
66 dst = x1.dp; | |
67 for (x = B; x < a->used; x++) { | |
68 *dst++ = *src++; | |
69 } | |
70 } | |
71 | |
72 x0.used = B; | |
73 x1.used = a->used - B; | |
74 | |
75 mp_clamp (&x0); | |
76 | |
77 /* now calc the products x0*x0 and x1*x1 */ | |
78 if (mp_sqr (&x0, &x0x0) != MP_OKAY) | |
79 goto X1X1; /* x0x0 = x0*x0 */ | |
80 if (mp_sqr (&x1, &x1x1) != MP_OKAY) | |
81 goto X1X1; /* x1x1 = x1*x1 */ | |
82 | |
83 /* now calc (x1-x0)**2 */ | |
84 if (mp_sub (&x1, &x0, &t1) != MP_OKAY) | |
85 goto X1X1; /* t1 = x1 - x0 */ | |
86 if (mp_sqr (&t1, &t1) != MP_OKAY) | |
87 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ | |
88 | |
89 /* add x0y0 */ | |
90 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY) | |
91 goto X1X1; /* t2 = x0x0 + x1x1 */ | |
92 if (mp_sub (&t2, &t1, &t1) != MP_OKAY) | |
93 goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */ | |
94 | |
95 /* shift by B */ | |
96 if (mp_lshd (&t1, B) != MP_OKAY) | |
97 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ | |
98 if (mp_lshd (&x1x1, B * 2) != MP_OKAY) | |
99 goto X1X1; /* x1x1 = x1x1 << 2*B */ | |
100 | |
101 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY) | |
102 goto X1X1; /* t1 = x0x0 + t1 */ | |
103 if (mp_add (&t1, &x1x1, b) != MP_OKAY) | |
104 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ | |
105 | |
106 err = MP_OKAY; | |
107 | |
108 X1X1:mp_clear (&x1x1); | |
109 X0X0:mp_clear (&x0x0); | |
110 T2:mp_clear (&t2); | |
111 T1:mp_clear (&t1); | |
112 X1:mp_clear (&x1); | |
113 X0:mp_clear (&x0); | |
114 ERR: | |
115 return err; | |
116 } | |
117 #endif |