Mercurial > dropbear
comparison libtommath/bn_mp_prime_next_prime.c @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
283:bd240aa12ba7 | 284:eed26cff980b |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_MP_PRIME_NEXT_PRIME_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 /* finds the next prime after the number "a" using "t" trials | |
19 * of Miller-Rabin. | |
20 * | |
21 * bbs_style = 1 means the prime must be congruent to 3 mod 4 | |
22 */ | |
23 int mp_prime_next_prime(mp_int *a, int t, int bbs_style) | |
24 { | |
25 int err, res, x, y; | |
26 mp_digit res_tab[PRIME_SIZE], step, kstep; | |
27 mp_int b; | |
28 | |
29 /* ensure t is valid */ | |
30 if (t <= 0 || t > PRIME_SIZE) { | |
31 return MP_VAL; | |
32 } | |
33 | |
34 /* force positive */ | |
35 a->sign = MP_ZPOS; | |
36 | |
37 /* simple algo if a is less than the largest prime in the table */ | |
38 if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) { | |
39 /* find which prime it is bigger than */ | |
40 for (x = PRIME_SIZE - 2; x >= 0; x--) { | |
41 if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { | |
42 if (bbs_style == 1) { | |
43 /* ok we found a prime smaller or | |
44 * equal [so the next is larger] | |
45 * | |
46 * however, the prime must be | |
47 * congruent to 3 mod 4 | |
48 */ | |
49 if ((ltm_prime_tab[x + 1] & 3) != 3) { | |
50 /* scan upwards for a prime congruent to 3 mod 4 */ | |
51 for (y = x + 1; y < PRIME_SIZE; y++) { | |
52 if ((ltm_prime_tab[y] & 3) == 3) { | |
53 mp_set(a, ltm_prime_tab[y]); | |
54 return MP_OKAY; | |
55 } | |
56 } | |
57 } | |
58 } else { | |
59 mp_set(a, ltm_prime_tab[x + 1]); | |
60 return MP_OKAY; | |
61 } | |
62 } | |
63 } | |
64 /* at this point a maybe 1 */ | |
65 if (mp_cmp_d(a, 1) == MP_EQ) { | |
66 mp_set(a, 2); | |
67 return MP_OKAY; | |
68 } | |
69 /* fall through to the sieve */ | |
70 } | |
71 | |
72 /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ | |
73 if (bbs_style == 1) { | |
74 kstep = 4; | |
75 } else { | |
76 kstep = 2; | |
77 } | |
78 | |
79 /* at this point we will use a combination of a sieve and Miller-Rabin */ | |
80 | |
81 if (bbs_style == 1) { | |
82 /* if a mod 4 != 3 subtract the correct value to make it so */ | |
83 if ((a->dp[0] & 3) != 3) { | |
84 if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; | |
85 } | |
86 } else { | |
87 if (mp_iseven(a) == 1) { | |
88 /* force odd */ | |
89 if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { | |
90 return err; | |
91 } | |
92 } | |
93 } | |
94 | |
95 /* generate the restable */ | |
96 for (x = 1; x < PRIME_SIZE; x++) { | |
97 if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) { | |
98 return err; | |
99 } | |
100 } | |
101 | |
102 /* init temp used for Miller-Rabin Testing */ | |
103 if ((err = mp_init(&b)) != MP_OKAY) { | |
104 return err; | |
105 } | |
106 | |
107 for (;;) { | |
108 /* skip to the next non-trivially divisible candidate */ | |
109 step = 0; | |
110 do { | |
111 /* y == 1 if any residue was zero [e.g. cannot be prime] */ | |
112 y = 0; | |
113 | |
114 /* increase step to next candidate */ | |
115 step += kstep; | |
116 | |
117 /* compute the new residue without using division */ | |
118 for (x = 1; x < PRIME_SIZE; x++) { | |
119 /* add the step to each residue */ | |
120 res_tab[x] += kstep; | |
121 | |
122 /* subtract the modulus [instead of using division] */ | |
123 if (res_tab[x] >= ltm_prime_tab[x]) { | |
124 res_tab[x] -= ltm_prime_tab[x]; | |
125 } | |
126 | |
127 /* set flag if zero */ | |
128 if (res_tab[x] == 0) { | |
129 y = 1; | |
130 } | |
131 } | |
132 } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); | |
133 | |
134 /* add the step */ | |
135 if ((err = mp_add_d(a, step, a)) != MP_OKAY) { | |
136 goto LBL_ERR; | |
137 } | |
138 | |
139 /* if didn't pass sieve and step == MAX then skip test */ | |
140 if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { | |
141 continue; | |
142 } | |
143 | |
144 /* is this prime? */ | |
145 for (x = 0; x < t; x++) { | |
146 mp_set(&b, ltm_prime_tab[t]); | |
147 if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { | |
148 goto LBL_ERR; | |
149 } | |
150 if (res == MP_NO) { | |
151 break; | |
152 } | |
153 } | |
154 | |
155 if (res == MP_YES) { | |
156 break; | |
157 } | |
158 } | |
159 | |
160 err = MP_OKAY; | |
161 LBL_ERR: | |
162 mp_clear(&b); | |
163 return err; | |
164 } | |
165 | |
166 #endif |