Mercurial > dropbear
comparison libtommath/bn_s_mp_exptmod.c @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
283:bd240aa12ba7 | 284:eed26cff980b |
---|---|
1 #include <tommath.h> | |
2 #ifdef BN_S_MP_EXPTMOD_C | |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
4 * | |
5 * LibTomMath is a library that provides multiple-precision | |
6 * integer arithmetic as well as number theoretic functionality. | |
7 * | |
8 * The library was designed directly after the MPI library by | |
9 * Michael Fromberger but has been written from scratch with | |
10 * additional optimizations in place. | |
11 * | |
12 * The library is free for all purposes without any express | |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
16 */ | |
17 | |
18 #ifdef MP_LOW_MEM | |
19 #define TAB_SIZE 32 | |
20 #else | |
21 #define TAB_SIZE 256 | |
22 #endif | |
23 | |
24 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | |
25 { | |
26 mp_int M[TAB_SIZE], res, mu; | |
27 mp_digit buf; | |
28 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | |
29 int (*redux)(mp_int*,mp_int*,mp_int*); | |
30 | |
31 /* find window size */ | |
32 x = mp_count_bits (X); | |
33 if (x <= 7) { | |
34 winsize = 2; | |
35 } else if (x <= 36) { | |
36 winsize = 3; | |
37 } else if (x <= 140) { | |
38 winsize = 4; | |
39 } else if (x <= 450) { | |
40 winsize = 5; | |
41 } else if (x <= 1303) { | |
42 winsize = 6; | |
43 } else if (x <= 3529) { | |
44 winsize = 7; | |
45 } else { | |
46 winsize = 8; | |
47 } | |
48 | |
49 #ifdef MP_LOW_MEM | |
50 if (winsize > 5) { | |
51 winsize = 5; | |
52 } | |
53 #endif | |
54 | |
55 /* init M array */ | |
56 /* init first cell */ | |
57 if ((err = mp_init(&M[1])) != MP_OKAY) { | |
58 return err; | |
59 } | |
60 | |
61 /* now init the second half of the array */ | |
62 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | |
63 if ((err = mp_init(&M[x])) != MP_OKAY) { | |
64 for (y = 1<<(winsize-1); y < x; y++) { | |
65 mp_clear (&M[y]); | |
66 } | |
67 mp_clear(&M[1]); | |
68 return err; | |
69 } | |
70 } | |
71 | |
72 /* create mu, used for Barrett reduction */ | |
73 if ((err = mp_init (&mu)) != MP_OKAY) { | |
74 goto LBL_M; | |
75 } | |
76 | |
77 if (redmode == 0) { | |
78 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | |
79 goto LBL_MU; | |
80 } | |
81 redux = mp_reduce; | |
82 } else { | |
83 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { | |
84 goto LBL_MU; | |
85 } | |
86 redux = mp_reduce_2k_l; | |
87 } | |
88 | |
89 /* create M table | |
90 * | |
91 * The M table contains powers of the base, | |
92 * e.g. M[x] = G**x mod P | |
93 * | |
94 * The first half of the table is not | |
95 * computed though accept for M[0] and M[1] | |
96 */ | |
97 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { | |
98 goto LBL_MU; | |
99 } | |
100 | |
101 /* compute the value at M[1<<(winsize-1)] by squaring | |
102 * M[1] (winsize-1) times | |
103 */ | |
104 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { | |
105 goto LBL_MU; | |
106 } | |
107 | |
108 for (x = 0; x < (winsize - 1); x++) { | |
109 /* square it */ | |
110 if ((err = mp_sqr (&M[1 << (winsize - 1)], | |
111 &M[1 << (winsize - 1)])) != MP_OKAY) { | |
112 goto LBL_MU; | |
113 } | |
114 | |
115 /* reduce modulo P */ | |
116 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | |
117 goto LBL_MU; | |
118 } | |
119 } | |
120 | |
121 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) | |
122 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) | |
123 */ | |
124 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { | |
125 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | |
126 goto LBL_MU; | |
127 } | |
128 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { | |
129 goto LBL_MU; | |
130 } | |
131 } | |
132 | |
133 /* setup result */ | |
134 if ((err = mp_init (&res)) != MP_OKAY) { | |
135 goto LBL_MU; | |
136 } | |
137 mp_set (&res, 1); | |
138 | |
139 /* set initial mode and bit cnt */ | |
140 mode = 0; | |
141 bitcnt = 1; | |
142 buf = 0; | |
143 digidx = X->used - 1; | |
144 bitcpy = 0; | |
145 bitbuf = 0; | |
146 | |
147 for (;;) { | |
148 /* grab next digit as required */ | |
149 if (--bitcnt == 0) { | |
150 /* if digidx == -1 we are out of digits */ | |
151 if (digidx == -1) { | |
152 break; | |
153 } | |
154 /* read next digit and reset the bitcnt */ | |
155 buf = X->dp[digidx--]; | |
156 bitcnt = (int) DIGIT_BIT; | |
157 } | |
158 | |
159 /* grab the next msb from the exponent */ | |
160 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; | |
161 buf <<= (mp_digit)1; | |
162 | |
163 /* if the bit is zero and mode == 0 then we ignore it | |
164 * These represent the leading zero bits before the first 1 bit | |
165 * in the exponent. Technically this opt is not required but it | |
166 * does lower the # of trivial squaring/reductions used | |
167 */ | |
168 if (mode == 0 && y == 0) { | |
169 continue; | |
170 } | |
171 | |
172 /* if the bit is zero and mode == 1 then we square */ | |
173 if (mode == 1 && y == 0) { | |
174 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
175 goto LBL_RES; | |
176 } | |
177 if ((err = redux (&res, P, &mu)) != MP_OKAY) { | |
178 goto LBL_RES; | |
179 } | |
180 continue; | |
181 } | |
182 | |
183 /* else we add it to the window */ | |
184 bitbuf |= (y << (winsize - ++bitcpy)); | |
185 mode = 2; | |
186 | |
187 if (bitcpy == winsize) { | |
188 /* ok window is filled so square as required and multiply */ | |
189 /* square first */ | |
190 for (x = 0; x < winsize; x++) { | |
191 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
192 goto LBL_RES; | |
193 } | |
194 if ((err = redux (&res, P, &mu)) != MP_OKAY) { | |
195 goto LBL_RES; | |
196 } | |
197 } | |
198 | |
199 /* then multiply */ | |
200 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | |
201 goto LBL_RES; | |
202 } | |
203 if ((err = redux (&res, P, &mu)) != MP_OKAY) { | |
204 goto LBL_RES; | |
205 } | |
206 | |
207 /* empty window and reset */ | |
208 bitcpy = 0; | |
209 bitbuf = 0; | |
210 mode = 1; | |
211 } | |
212 } | |
213 | |
214 /* if bits remain then square/multiply */ | |
215 if (mode == 2 && bitcpy > 0) { | |
216 /* square then multiply if the bit is set */ | |
217 for (x = 0; x < bitcpy; x++) { | |
218 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
219 goto LBL_RES; | |
220 } | |
221 if ((err = redux (&res, P, &mu)) != MP_OKAY) { | |
222 goto LBL_RES; | |
223 } | |
224 | |
225 bitbuf <<= 1; | |
226 if ((bitbuf & (1 << winsize)) != 0) { | |
227 /* then multiply */ | |
228 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | |
229 goto LBL_RES; | |
230 } | |
231 if ((err = redux (&res, P, &mu)) != MP_OKAY) { | |
232 goto LBL_RES; | |
233 } | |
234 } | |
235 } | |
236 } | |
237 | |
238 mp_exch (&res, Y); | |
239 err = MP_OKAY; | |
240 LBL_RES:mp_clear (&res); | |
241 LBL_MU:mp_clear (&mu); | |
242 LBL_M: | |
243 mp_clear(&M[1]); | |
244 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | |
245 mp_clear (&M[x]); | |
246 } | |
247 return err; | |
248 } | |
249 #endif |