Mercurial > dropbear
comparison libtommath/tommath.h @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
comparison
equal
deleted
inserted
replaced
283:bd240aa12ba7 | 284:eed26cff980b |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #ifndef BN_H_ | |
16 #define BN_H_ | |
17 | |
18 #include <stdio.h> | |
19 #include <string.h> | |
20 #include <stdlib.h> | |
21 #include <ctype.h> | |
22 #include <limits.h> | |
23 | |
24 #include <tommath_class.h> | |
25 | |
26 #undef MIN | |
27 #define MIN(x,y) ((x)<(y)?(x):(y)) | |
28 #undef MAX | |
29 #define MAX(x,y) ((x)>(y)?(x):(y)) | |
30 | |
31 #ifdef __cplusplus | |
32 extern "C" { | |
33 | |
34 /* C++ compilers don't like assigning void * to mp_digit * */ | |
35 #define OPT_CAST(x) (x *) | |
36 | |
37 #else | |
38 | |
39 /* C on the other hand doesn't care */ | |
40 #define OPT_CAST(x) | |
41 | |
42 #endif | |
43 | |
44 | |
45 /* detect 64-bit mode if possible */ | |
46 #if defined(__x86_64__) | |
47 #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) | |
48 #define MP_64BIT | |
49 #endif | |
50 #endif | |
51 | |
52 /* some default configurations. | |
53 * | |
54 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits | |
55 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits | |
56 * | |
57 * At the very least a mp_digit must be able to hold 7 bits | |
58 * [any size beyond that is ok provided it doesn't overflow the data type] | |
59 */ | |
60 #ifdef MP_8BIT | |
61 typedef unsigned char mp_digit; | |
62 typedef unsigned short mp_word; | |
63 #elif defined(MP_16BIT) | |
64 typedef unsigned short mp_digit; | |
65 typedef unsigned long mp_word; | |
66 #elif defined(MP_64BIT) | |
67 /* for GCC only on supported platforms */ | |
68 #ifndef CRYPT | |
69 typedef unsigned long long ulong64; | |
70 typedef signed long long long64; | |
71 #endif | |
72 | |
73 typedef unsigned long mp_digit; | |
74 typedef unsigned long mp_word __attribute__ ((mode(TI))); | |
75 | |
76 #define DIGIT_BIT 60 | |
77 #else | |
78 /* this is the default case, 28-bit digits */ | |
79 | |
80 /* this is to make porting into LibTomCrypt easier :-) */ | |
81 #ifndef CRYPT | |
82 #if defined(_MSC_VER) || defined(__BORLANDC__) | |
83 typedef unsigned __int64 ulong64; | |
84 typedef signed __int64 long64; | |
85 #else | |
86 typedef unsigned long long ulong64; | |
87 typedef signed long long long64; | |
88 #endif | |
89 #endif | |
90 | |
91 typedef unsigned long mp_digit; | |
92 typedef ulong64 mp_word; | |
93 | |
94 #ifdef MP_31BIT | |
95 /* this is an extension that uses 31-bit digits */ | |
96 #define DIGIT_BIT 31 | |
97 #else | |
98 /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ | |
99 #define DIGIT_BIT 28 | |
100 #define MP_28BIT | |
101 #endif | |
102 #endif | |
103 | |
104 /* define heap macros */ | |
105 #ifndef CRYPT | |
106 /* default to libc stuff */ | |
107 #ifndef XMALLOC | |
108 #define XMALLOC malloc | |
109 #define XFREE free | |
110 #define XREALLOC realloc | |
111 #define XCALLOC calloc | |
112 #else | |
113 /* prototypes for our heap functions */ | |
114 extern void *XMALLOC(size_t n); | |
115 extern void *REALLOC(void *p, size_t n); | |
116 extern void *XCALLOC(size_t n, size_t s); | |
117 extern void XFREE(void *p); | |
118 #endif | |
119 #endif | |
120 | |
121 | |
122 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ | |
123 #ifndef DIGIT_BIT | |
124 #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ | |
125 #endif | |
126 | |
127 #define MP_DIGIT_BIT DIGIT_BIT | |
128 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) | |
129 #define MP_DIGIT_MAX MP_MASK | |
130 | |
131 /* equalities */ | |
132 #define MP_LT -1 /* less than */ | |
133 #define MP_EQ 0 /* equal to */ | |
134 #define MP_GT 1 /* greater than */ | |
135 | |
136 #define MP_ZPOS 0 /* positive integer */ | |
137 #define MP_NEG 1 /* negative */ | |
138 | |
139 #define MP_OKAY 0 /* ok result */ | |
140 #define MP_MEM -2 /* out of mem */ | |
141 #define MP_VAL -3 /* invalid input */ | |
142 #define MP_RANGE MP_VAL | |
143 | |
144 #define MP_YES 1 /* yes response */ | |
145 #define MP_NO 0 /* no response */ | |
146 | |
147 /* Primality generation flags */ | |
148 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ | |
149 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ | |
150 #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */ | |
151 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ | |
152 | |
153 typedef int mp_err; | |
154 | |
155 /* you'll have to tune these... */ | |
156 extern int KARATSUBA_MUL_CUTOFF, | |
157 KARATSUBA_SQR_CUTOFF, | |
158 TOOM_MUL_CUTOFF, | |
159 TOOM_SQR_CUTOFF; | |
160 | |
161 /* define this to use lower memory usage routines (exptmods mostly) */ | |
162 /* #define MP_LOW_MEM */ | |
163 | |
164 /* default precision */ | |
165 #ifndef MP_PREC | |
166 #ifndef MP_LOW_MEM | |
167 #define MP_PREC 64 /* default digits of precision */ | |
168 #else | |
169 #define MP_PREC 8 /* default digits of precision */ | |
170 #endif | |
171 #endif | |
172 | |
173 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ | |
174 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) | |
175 | |
176 /* the infamous mp_int structure */ | |
177 typedef struct { | |
178 int used, alloc, sign; | |
179 mp_digit *dp; | |
180 } mp_int; | |
181 | |
182 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ | |
183 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); | |
184 | |
185 | |
186 #define USED(m) ((m)->used) | |
187 #define DIGIT(m,k) ((m)->dp[(k)]) | |
188 #define SIGN(m) ((m)->sign) | |
189 | |
190 /* error code to char* string */ | |
191 char *mp_error_to_string(int code); | |
192 | |
193 /* ---> init and deinit bignum functions <--- */ | |
194 /* init a bignum */ | |
195 int mp_init(mp_int *a); | |
196 | |
197 /* free a bignum */ | |
198 void mp_clear(mp_int *a); | |
199 | |
200 /* init a null terminated series of arguments */ | |
201 int mp_init_multi(mp_int *mp, ...); | |
202 | |
203 /* clear a null terminated series of arguments */ | |
204 void mp_clear_multi(mp_int *mp, ...); | |
205 | |
206 /* exchange two ints */ | |
207 void mp_exch(mp_int *a, mp_int *b); | |
208 | |
209 /* shrink ram required for a bignum */ | |
210 int mp_shrink(mp_int *a); | |
211 | |
212 /* grow an int to a given size */ | |
213 int mp_grow(mp_int *a, int size); | |
214 | |
215 /* init to a given number of digits */ | |
216 int mp_init_size(mp_int *a, int size); | |
217 | |
218 /* ---> Basic Manipulations <--- */ | |
219 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) | |
220 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) | |
221 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) | |
222 | |
223 /* set to zero */ | |
224 void mp_zero(mp_int *a); | |
225 | |
226 /* set to a digit */ | |
227 void mp_set(mp_int *a, mp_digit b); | |
228 | |
229 /* set a 32-bit const */ | |
230 int mp_set_int(mp_int *a, unsigned long b); | |
231 | |
232 /* get a 32-bit value */ | |
233 unsigned long mp_get_int(mp_int * a); | |
234 | |
235 /* initialize and set a digit */ | |
236 int mp_init_set (mp_int * a, mp_digit b); | |
237 | |
238 /* initialize and set 32-bit value */ | |
239 int mp_init_set_int (mp_int * a, unsigned long b); | |
240 | |
241 /* copy, b = a */ | |
242 int mp_copy(mp_int *a, mp_int *b); | |
243 | |
244 /* inits and copies, a = b */ | |
245 int mp_init_copy(mp_int *a, mp_int *b); | |
246 | |
247 /* trim unused digits */ | |
248 void mp_clamp(mp_int *a); | |
249 | |
250 /* ---> digit manipulation <--- */ | |
251 | |
252 /* right shift by "b" digits */ | |
253 void mp_rshd(mp_int *a, int b); | |
254 | |
255 /* left shift by "b" digits */ | |
256 int mp_lshd(mp_int *a, int b); | |
257 | |
258 /* c = a / 2**b */ | |
259 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); | |
260 | |
261 /* b = a/2 */ | |
262 int mp_div_2(mp_int *a, mp_int *b); | |
263 | |
264 /* c = a * 2**b */ | |
265 int mp_mul_2d(mp_int *a, int b, mp_int *c); | |
266 | |
267 /* b = a*2 */ | |
268 int mp_mul_2(mp_int *a, mp_int *b); | |
269 | |
270 /* c = a mod 2**d */ | |
271 int mp_mod_2d(mp_int *a, int b, mp_int *c); | |
272 | |
273 /* computes a = 2**b */ | |
274 int mp_2expt(mp_int *a, int b); | |
275 | |
276 /* Counts the number of lsbs which are zero before the first zero bit */ | |
277 int mp_cnt_lsb(mp_int *a); | |
278 | |
279 /* I Love Earth! */ | |
280 | |
281 /* makes a pseudo-random int of a given size */ | |
282 int mp_rand(mp_int *a, int digits); | |
283 | |
284 /* ---> binary operations <--- */ | |
285 /* c = a XOR b */ | |
286 int mp_xor(mp_int *a, mp_int *b, mp_int *c); | |
287 | |
288 /* c = a OR b */ | |
289 int mp_or(mp_int *a, mp_int *b, mp_int *c); | |
290 | |
291 /* c = a AND b */ | |
292 int mp_and(mp_int *a, mp_int *b, mp_int *c); | |
293 | |
294 /* ---> Basic arithmetic <--- */ | |
295 | |
296 /* b = -a */ | |
297 int mp_neg(mp_int *a, mp_int *b); | |
298 | |
299 /* b = |a| */ | |
300 int mp_abs(mp_int *a, mp_int *b); | |
301 | |
302 /* compare a to b */ | |
303 int mp_cmp(mp_int *a, mp_int *b); | |
304 | |
305 /* compare |a| to |b| */ | |
306 int mp_cmp_mag(mp_int *a, mp_int *b); | |
307 | |
308 /* c = a + b */ | |
309 int mp_add(mp_int *a, mp_int *b, mp_int *c); | |
310 | |
311 /* c = a - b */ | |
312 int mp_sub(mp_int *a, mp_int *b, mp_int *c); | |
313 | |
314 /* c = a * b */ | |
315 int mp_mul(mp_int *a, mp_int *b, mp_int *c); | |
316 | |
317 /* b = a*a */ | |
318 int mp_sqr(mp_int *a, mp_int *b); | |
319 | |
320 /* a/b => cb + d == a */ | |
321 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
322 | |
323 /* c = a mod b, 0 <= c < b */ | |
324 int mp_mod(mp_int *a, mp_int *b, mp_int *c); | |
325 | |
326 /* ---> single digit functions <--- */ | |
327 | |
328 /* compare against a single digit */ | |
329 int mp_cmp_d(mp_int *a, mp_digit b); | |
330 | |
331 /* c = a + b */ | |
332 int mp_add_d(mp_int *a, mp_digit b, mp_int *c); | |
333 | |
334 /* c = a - b */ | |
335 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); | |
336 | |
337 /* c = a * b */ | |
338 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); | |
339 | |
340 /* a/b => cb + d == a */ | |
341 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); | |
342 | |
343 /* a/3 => 3c + d == a */ | |
344 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); | |
345 | |
346 /* c = a**b */ | |
347 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); | |
348 | |
349 /* c = a mod b, 0 <= c < b */ | |
350 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); | |
351 | |
352 /* ---> number theory <--- */ | |
353 | |
354 /* d = a + b (mod c) */ | |
355 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
356 | |
357 /* d = a - b (mod c) */ | |
358 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
359 | |
360 /* d = a * b (mod c) */ | |
361 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
362 | |
363 /* c = a * a (mod b) */ | |
364 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); | |
365 | |
366 /* c = 1/a (mod b) */ | |
367 int mp_invmod(mp_int *a, mp_int *b, mp_int *c); | |
368 | |
369 /* c = (a, b) */ | |
370 int mp_gcd(mp_int *a, mp_int *b, mp_int *c); | |
371 | |
372 /* produces value such that U1*a + U2*b = U3 */ | |
373 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); | |
374 | |
375 /* c = [a, b] or (a*b)/(a, b) */ | |
376 int mp_lcm(mp_int *a, mp_int *b, mp_int *c); | |
377 | |
378 /* finds one of the b'th root of a, such that |c|**b <= |a| | |
379 * | |
380 * returns error if a < 0 and b is even | |
381 */ | |
382 int mp_n_root(mp_int *a, mp_digit b, mp_int *c); | |
383 | |
384 /* special sqrt algo */ | |
385 int mp_sqrt(mp_int *arg, mp_int *ret); | |
386 | |
387 /* is number a square? */ | |
388 int mp_is_square(mp_int *arg, int *ret); | |
389 | |
390 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ | |
391 int mp_jacobi(mp_int *a, mp_int *n, int *c); | |
392 | |
393 /* used to setup the Barrett reduction for a given modulus b */ | |
394 int mp_reduce_setup(mp_int *a, mp_int *b); | |
395 | |
396 /* Barrett Reduction, computes a (mod b) with a precomputed value c | |
397 * | |
398 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely | |
399 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. | |
400 */ | |
401 int mp_reduce(mp_int *a, mp_int *b, mp_int *c); | |
402 | |
403 /* setups the montgomery reduction */ | |
404 int mp_montgomery_setup(mp_int *a, mp_digit *mp); | |
405 | |
406 /* computes a = B**n mod b without division or multiplication useful for | |
407 * normalizing numbers in a Montgomery system. | |
408 */ | |
409 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); | |
410 | |
411 /* computes x/R == x (mod N) via Montgomery Reduction */ | |
412 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | |
413 | |
414 /* returns 1 if a is a valid DR modulus */ | |
415 int mp_dr_is_modulus(mp_int *a); | |
416 | |
417 /* sets the value of "d" required for mp_dr_reduce */ | |
418 void mp_dr_setup(mp_int *a, mp_digit *d); | |
419 | |
420 /* reduces a modulo b using the Diminished Radix method */ | |
421 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); | |
422 | |
423 /* returns true if a can be reduced with mp_reduce_2k */ | |
424 int mp_reduce_is_2k(mp_int *a); | |
425 | |
426 /* determines k value for 2k reduction */ | |
427 int mp_reduce_2k_setup(mp_int *a, mp_digit *d); | |
428 | |
429 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | |
430 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); | |
431 | |
432 /* returns true if a can be reduced with mp_reduce_2k_l */ | |
433 int mp_reduce_is_2k_l(mp_int *a); | |
434 | |
435 /* determines k value for 2k reduction */ | |
436 int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); | |
437 | |
438 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | |
439 int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); | |
440 | |
441 /* d = a**b (mod c) */ | |
442 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | |
443 | |
444 /* ---> Primes <--- */ | |
445 | |
446 /* number of primes */ | |
447 #ifdef MP_8BIT | |
448 #define PRIME_SIZE 31 | |
449 #else | |
450 #define PRIME_SIZE 256 | |
451 #endif | |
452 | |
453 /* table of first PRIME_SIZE primes */ | |
454 extern const mp_digit ltm_prime_tab[]; | |
455 | |
456 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ | |
457 int mp_prime_is_divisible(mp_int *a, int *result); | |
458 | |
459 /* performs one Fermat test of "a" using base "b". | |
460 * Sets result to 0 if composite or 1 if probable prime | |
461 */ | |
462 int mp_prime_fermat(mp_int *a, mp_int *b, int *result); | |
463 | |
464 /* performs one Miller-Rabin test of "a" using base "b". | |
465 * Sets result to 0 if composite or 1 if probable prime | |
466 */ | |
467 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); | |
468 | |
469 /* This gives [for a given bit size] the number of trials required | |
470 * such that Miller-Rabin gives a prob of failure lower than 2^-96 | |
471 */ | |
472 int mp_prime_rabin_miller_trials(int size); | |
473 | |
474 /* performs t rounds of Miller-Rabin on "a" using the first | |
475 * t prime bases. Also performs an initial sieve of trial | |
476 * division. Determines if "a" is prime with probability | |
477 * of error no more than (1/4)**t. | |
478 * | |
479 * Sets result to 1 if probably prime, 0 otherwise | |
480 */ | |
481 int mp_prime_is_prime(mp_int *a, int t, int *result); | |
482 | |
483 /* finds the next prime after the number "a" using "t" trials | |
484 * of Miller-Rabin. | |
485 * | |
486 * bbs_style = 1 means the prime must be congruent to 3 mod 4 | |
487 */ | |
488 int mp_prime_next_prime(mp_int *a, int t, int bbs_style); | |
489 | |
490 /* makes a truly random prime of a given size (bytes), | |
491 * call with bbs = 1 if you want it to be congruent to 3 mod 4 | |
492 * | |
493 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can | |
494 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself | |
495 * so it can be NULL | |
496 * | |
497 * The prime generated will be larger than 2^(8*size). | |
498 */ | |
499 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) | |
500 | |
501 /* makes a truly random prime of a given size (bits), | |
502 * | |
503 * Flags are as follows: | |
504 * | |
505 * LTM_PRIME_BBS - make prime congruent to 3 mod 4 | |
506 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) | |
507 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero | |
508 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one | |
509 * | |
510 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can | |
511 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself | |
512 * so it can be NULL | |
513 * | |
514 */ | |
515 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); | |
516 | |
517 /* ---> radix conversion <--- */ | |
518 int mp_count_bits(mp_int *a); | |
519 | |
520 int mp_unsigned_bin_size(mp_int *a); | |
521 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c); | |
522 int mp_to_unsigned_bin(mp_int *a, unsigned char *b); | |
523 int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | |
524 | |
525 int mp_signed_bin_size(mp_int *a); | |
526 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); | |
527 int mp_to_signed_bin(mp_int *a, unsigned char *b); | |
528 int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | |
529 | |
530 int mp_read_radix(mp_int *a, const char *str, int radix); | |
531 int mp_toradix(mp_int *a, char *str, int radix); | |
532 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); | |
533 int mp_radix_size(mp_int *a, int radix, int *size); | |
534 | |
535 int mp_fread(mp_int *a, int radix, FILE *stream); | |
536 int mp_fwrite(mp_int *a, int radix, FILE *stream); | |
537 | |
538 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) | |
539 #define mp_raw_size(mp) mp_signed_bin_size(mp) | |
540 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) | |
541 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) | |
542 #define mp_mag_size(mp) mp_unsigned_bin_size(mp) | |
543 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) | |
544 | |
545 #define mp_tobinary(M, S) mp_toradix((M), (S), 2) | |
546 #define mp_tooctal(M, S) mp_toradix((M), (S), 8) | |
547 #define mp_todecimal(M, S) mp_toradix((M), (S), 10) | |
548 #define mp_tohex(M, S) mp_toradix((M), (S), 16) | |
549 | |
550 /* lowlevel functions, do not call! */ | |
551 int s_mp_add(mp_int *a, mp_int *b, mp_int *c); | |
552 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); | |
553 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) | |
554 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | |
555 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | |
556 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | |
557 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); | |
558 int fast_s_mp_sqr(mp_int *a, mp_int *b); | |
559 int s_mp_sqr(mp_int *a, mp_int *b); | |
560 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); | |
561 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); | |
562 int mp_karatsuba_sqr(mp_int *a, mp_int *b); | |
563 int mp_toom_sqr(mp_int *a, mp_int *b); | |
564 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); | |
565 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); | |
566 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | |
567 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); | |
568 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); | |
569 void bn_reverse(unsigned char *s, int len); | |
570 | |
571 extern const char *mp_s_rmap; | |
572 | |
573 #ifdef __cplusplus | |
574 } | |
575 #endif | |
576 | |
577 #endif | |
578 |