comparison libtommath/tommath.h @ 284:eed26cff980b

propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583) to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author Matt Johnston <matt@ucc.asn.au>
date Wed, 08 Mar 2006 13:23:49 +0000
parents
children 5ff8218bcee9
comparison
equal deleted inserted replaced
283:bd240aa12ba7 284:eed26cff980b
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis
2 *
3 * LibTomMath is a library that provides multiple-precision
4 * integer arithmetic as well as number theoretic functionality.
5 *
6 * The library was designed directly after the MPI library by
7 * Michael Fromberger but has been written from scratch with
8 * additional optimizations in place.
9 *
10 * The library is free for all purposes without any express
11 * guarantee it works.
12 *
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org
14 */
15 #ifndef BN_H_
16 #define BN_H_
17
18 #include <stdio.h>
19 #include <string.h>
20 #include <stdlib.h>
21 #include <ctype.h>
22 #include <limits.h>
23
24 #include <tommath_class.h>
25
26 #undef MIN
27 #define MIN(x,y) ((x)<(y)?(x):(y))
28 #undef MAX
29 #define MAX(x,y) ((x)>(y)?(x):(y))
30
31 #ifdef __cplusplus
32 extern "C" {
33
34 /* C++ compilers don't like assigning void * to mp_digit * */
35 #define OPT_CAST(x) (x *)
36
37 #else
38
39 /* C on the other hand doesn't care */
40 #define OPT_CAST(x)
41
42 #endif
43
44
45 /* detect 64-bit mode if possible */
46 #if defined(__x86_64__)
47 #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
48 #define MP_64BIT
49 #endif
50 #endif
51
52 /* some default configurations.
53 *
54 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
55 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
56 *
57 * At the very least a mp_digit must be able to hold 7 bits
58 * [any size beyond that is ok provided it doesn't overflow the data type]
59 */
60 #ifdef MP_8BIT
61 typedef unsigned char mp_digit;
62 typedef unsigned short mp_word;
63 #elif defined(MP_16BIT)
64 typedef unsigned short mp_digit;
65 typedef unsigned long mp_word;
66 #elif defined(MP_64BIT)
67 /* for GCC only on supported platforms */
68 #ifndef CRYPT
69 typedef unsigned long long ulong64;
70 typedef signed long long long64;
71 #endif
72
73 typedef unsigned long mp_digit;
74 typedef unsigned long mp_word __attribute__ ((mode(TI)));
75
76 #define DIGIT_BIT 60
77 #else
78 /* this is the default case, 28-bit digits */
79
80 /* this is to make porting into LibTomCrypt easier :-) */
81 #ifndef CRYPT
82 #if defined(_MSC_VER) || defined(__BORLANDC__)
83 typedef unsigned __int64 ulong64;
84 typedef signed __int64 long64;
85 #else
86 typedef unsigned long long ulong64;
87 typedef signed long long long64;
88 #endif
89 #endif
90
91 typedef unsigned long mp_digit;
92 typedef ulong64 mp_word;
93
94 #ifdef MP_31BIT
95 /* this is an extension that uses 31-bit digits */
96 #define DIGIT_BIT 31
97 #else
98 /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
99 #define DIGIT_BIT 28
100 #define MP_28BIT
101 #endif
102 #endif
103
104 /* define heap macros */
105 #ifndef CRYPT
106 /* default to libc stuff */
107 #ifndef XMALLOC
108 #define XMALLOC malloc
109 #define XFREE free
110 #define XREALLOC realloc
111 #define XCALLOC calloc
112 #else
113 /* prototypes for our heap functions */
114 extern void *XMALLOC(size_t n);
115 extern void *REALLOC(void *p, size_t n);
116 extern void *XCALLOC(size_t n, size_t s);
117 extern void XFREE(void *p);
118 #endif
119 #endif
120
121
122 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
123 #ifndef DIGIT_BIT
124 #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */
125 #endif
126
127 #define MP_DIGIT_BIT DIGIT_BIT
128 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
129 #define MP_DIGIT_MAX MP_MASK
130
131 /* equalities */
132 #define MP_LT -1 /* less than */
133 #define MP_EQ 0 /* equal to */
134 #define MP_GT 1 /* greater than */
135
136 #define MP_ZPOS 0 /* positive integer */
137 #define MP_NEG 1 /* negative */
138
139 #define MP_OKAY 0 /* ok result */
140 #define MP_MEM -2 /* out of mem */
141 #define MP_VAL -3 /* invalid input */
142 #define MP_RANGE MP_VAL
143
144 #define MP_YES 1 /* yes response */
145 #define MP_NO 0 /* no response */
146
147 /* Primality generation flags */
148 #define LTM_PRIME_BBS 0x0001 /* BBS style prime */
149 #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
150 #define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
151 #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
152
153 typedef int mp_err;
154
155 /* you'll have to tune these... */
156 extern int KARATSUBA_MUL_CUTOFF,
157 KARATSUBA_SQR_CUTOFF,
158 TOOM_MUL_CUTOFF,
159 TOOM_SQR_CUTOFF;
160
161 /* define this to use lower memory usage routines (exptmods mostly) */
162 /* #define MP_LOW_MEM */
163
164 /* default precision */
165 #ifndef MP_PREC
166 #ifndef MP_LOW_MEM
167 #define MP_PREC 64 /* default digits of precision */
168 #else
169 #define MP_PREC 8 /* default digits of precision */
170 #endif
171 #endif
172
173 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
174 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
175
176 /* the infamous mp_int structure */
177 typedef struct {
178 int used, alloc, sign;
179 mp_digit *dp;
180 } mp_int;
181
182 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
183 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
184
185
186 #define USED(m) ((m)->used)
187 #define DIGIT(m,k) ((m)->dp[(k)])
188 #define SIGN(m) ((m)->sign)
189
190 /* error code to char* string */
191 char *mp_error_to_string(int code);
192
193 /* ---> init and deinit bignum functions <--- */
194 /* init a bignum */
195 int mp_init(mp_int *a);
196
197 /* free a bignum */
198 void mp_clear(mp_int *a);
199
200 /* init a null terminated series of arguments */
201 int mp_init_multi(mp_int *mp, ...);
202
203 /* clear a null terminated series of arguments */
204 void mp_clear_multi(mp_int *mp, ...);
205
206 /* exchange two ints */
207 void mp_exch(mp_int *a, mp_int *b);
208
209 /* shrink ram required for a bignum */
210 int mp_shrink(mp_int *a);
211
212 /* grow an int to a given size */
213 int mp_grow(mp_int *a, int size);
214
215 /* init to a given number of digits */
216 int mp_init_size(mp_int *a, int size);
217
218 /* ---> Basic Manipulations <--- */
219 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
220 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
221 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
222
223 /* set to zero */
224 void mp_zero(mp_int *a);
225
226 /* set to a digit */
227 void mp_set(mp_int *a, mp_digit b);
228
229 /* set a 32-bit const */
230 int mp_set_int(mp_int *a, unsigned long b);
231
232 /* get a 32-bit value */
233 unsigned long mp_get_int(mp_int * a);
234
235 /* initialize and set a digit */
236 int mp_init_set (mp_int * a, mp_digit b);
237
238 /* initialize and set 32-bit value */
239 int mp_init_set_int (mp_int * a, unsigned long b);
240
241 /* copy, b = a */
242 int mp_copy(mp_int *a, mp_int *b);
243
244 /* inits and copies, a = b */
245 int mp_init_copy(mp_int *a, mp_int *b);
246
247 /* trim unused digits */
248 void mp_clamp(mp_int *a);
249
250 /* ---> digit manipulation <--- */
251
252 /* right shift by "b" digits */
253 void mp_rshd(mp_int *a, int b);
254
255 /* left shift by "b" digits */
256 int mp_lshd(mp_int *a, int b);
257
258 /* c = a / 2**b */
259 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
260
261 /* b = a/2 */
262 int mp_div_2(mp_int *a, mp_int *b);
263
264 /* c = a * 2**b */
265 int mp_mul_2d(mp_int *a, int b, mp_int *c);
266
267 /* b = a*2 */
268 int mp_mul_2(mp_int *a, mp_int *b);
269
270 /* c = a mod 2**d */
271 int mp_mod_2d(mp_int *a, int b, mp_int *c);
272
273 /* computes a = 2**b */
274 int mp_2expt(mp_int *a, int b);
275
276 /* Counts the number of lsbs which are zero before the first zero bit */
277 int mp_cnt_lsb(mp_int *a);
278
279 /* I Love Earth! */
280
281 /* makes a pseudo-random int of a given size */
282 int mp_rand(mp_int *a, int digits);
283
284 /* ---> binary operations <--- */
285 /* c = a XOR b */
286 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
287
288 /* c = a OR b */
289 int mp_or(mp_int *a, mp_int *b, mp_int *c);
290
291 /* c = a AND b */
292 int mp_and(mp_int *a, mp_int *b, mp_int *c);
293
294 /* ---> Basic arithmetic <--- */
295
296 /* b = -a */
297 int mp_neg(mp_int *a, mp_int *b);
298
299 /* b = |a| */
300 int mp_abs(mp_int *a, mp_int *b);
301
302 /* compare a to b */
303 int mp_cmp(mp_int *a, mp_int *b);
304
305 /* compare |a| to |b| */
306 int mp_cmp_mag(mp_int *a, mp_int *b);
307
308 /* c = a + b */
309 int mp_add(mp_int *a, mp_int *b, mp_int *c);
310
311 /* c = a - b */
312 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
313
314 /* c = a * b */
315 int mp_mul(mp_int *a, mp_int *b, mp_int *c);
316
317 /* b = a*a */
318 int mp_sqr(mp_int *a, mp_int *b);
319
320 /* a/b => cb + d == a */
321 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
322
323 /* c = a mod b, 0 <= c < b */
324 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
325
326 /* ---> single digit functions <--- */
327
328 /* compare against a single digit */
329 int mp_cmp_d(mp_int *a, mp_digit b);
330
331 /* c = a + b */
332 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
333
334 /* c = a - b */
335 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
336
337 /* c = a * b */
338 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
339
340 /* a/b => cb + d == a */
341 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
342
343 /* a/3 => 3c + d == a */
344 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
345
346 /* c = a**b */
347 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
348
349 /* c = a mod b, 0 <= c < b */
350 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
351
352 /* ---> number theory <--- */
353
354 /* d = a + b (mod c) */
355 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
356
357 /* d = a - b (mod c) */
358 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
359
360 /* d = a * b (mod c) */
361 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
362
363 /* c = a * a (mod b) */
364 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
365
366 /* c = 1/a (mod b) */
367 int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
368
369 /* c = (a, b) */
370 int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
371
372 /* produces value such that U1*a + U2*b = U3 */
373 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
374
375 /* c = [a, b] or (a*b)/(a, b) */
376 int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
377
378 /* finds one of the b'th root of a, such that |c|**b <= |a|
379 *
380 * returns error if a < 0 and b is even
381 */
382 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
383
384 /* special sqrt algo */
385 int mp_sqrt(mp_int *arg, mp_int *ret);
386
387 /* is number a square? */
388 int mp_is_square(mp_int *arg, int *ret);
389
390 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */
391 int mp_jacobi(mp_int *a, mp_int *n, int *c);
392
393 /* used to setup the Barrett reduction for a given modulus b */
394 int mp_reduce_setup(mp_int *a, mp_int *b);
395
396 /* Barrett Reduction, computes a (mod b) with a precomputed value c
397 *
398 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
399 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
400 */
401 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
402
403 /* setups the montgomery reduction */
404 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
405
406 /* computes a = B**n mod b without division or multiplication useful for
407 * normalizing numbers in a Montgomery system.
408 */
409 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
410
411 /* computes x/R == x (mod N) via Montgomery Reduction */
412 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
413
414 /* returns 1 if a is a valid DR modulus */
415 int mp_dr_is_modulus(mp_int *a);
416
417 /* sets the value of "d" required for mp_dr_reduce */
418 void mp_dr_setup(mp_int *a, mp_digit *d);
419
420 /* reduces a modulo b using the Diminished Radix method */
421 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
422
423 /* returns true if a can be reduced with mp_reduce_2k */
424 int mp_reduce_is_2k(mp_int *a);
425
426 /* determines k value for 2k reduction */
427 int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
428
429 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
430 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
431
432 /* returns true if a can be reduced with mp_reduce_2k_l */
433 int mp_reduce_is_2k_l(mp_int *a);
434
435 /* determines k value for 2k reduction */
436 int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
437
438 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
439 int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
440
441 /* d = a**b (mod c) */
442 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
443
444 /* ---> Primes <--- */
445
446 /* number of primes */
447 #ifdef MP_8BIT
448 #define PRIME_SIZE 31
449 #else
450 #define PRIME_SIZE 256
451 #endif
452
453 /* table of first PRIME_SIZE primes */
454 extern const mp_digit ltm_prime_tab[];
455
456 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
457 int mp_prime_is_divisible(mp_int *a, int *result);
458
459 /* performs one Fermat test of "a" using base "b".
460 * Sets result to 0 if composite or 1 if probable prime
461 */
462 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
463
464 /* performs one Miller-Rabin test of "a" using base "b".
465 * Sets result to 0 if composite or 1 if probable prime
466 */
467 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
468
469 /* This gives [for a given bit size] the number of trials required
470 * such that Miller-Rabin gives a prob of failure lower than 2^-96
471 */
472 int mp_prime_rabin_miller_trials(int size);
473
474 /* performs t rounds of Miller-Rabin on "a" using the first
475 * t prime bases. Also performs an initial sieve of trial
476 * division. Determines if "a" is prime with probability
477 * of error no more than (1/4)**t.
478 *
479 * Sets result to 1 if probably prime, 0 otherwise
480 */
481 int mp_prime_is_prime(mp_int *a, int t, int *result);
482
483 /* finds the next prime after the number "a" using "t" trials
484 * of Miller-Rabin.
485 *
486 * bbs_style = 1 means the prime must be congruent to 3 mod 4
487 */
488 int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
489
490 /* makes a truly random prime of a given size (bytes),
491 * call with bbs = 1 if you want it to be congruent to 3 mod 4
492 *
493 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
494 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
495 * so it can be NULL
496 *
497 * The prime generated will be larger than 2^(8*size).
498 */
499 #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
500
501 /* makes a truly random prime of a given size (bits),
502 *
503 * Flags are as follows:
504 *
505 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
506 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
507 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
508 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
509 *
510 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
511 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
512 * so it can be NULL
513 *
514 */
515 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
516
517 /* ---> radix conversion <--- */
518 int mp_count_bits(mp_int *a);
519
520 int mp_unsigned_bin_size(mp_int *a);
521 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
522 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
523 int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
524
525 int mp_signed_bin_size(mp_int *a);
526 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
527 int mp_to_signed_bin(mp_int *a, unsigned char *b);
528 int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
529
530 int mp_read_radix(mp_int *a, const char *str, int radix);
531 int mp_toradix(mp_int *a, char *str, int radix);
532 int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
533 int mp_radix_size(mp_int *a, int radix, int *size);
534
535 int mp_fread(mp_int *a, int radix, FILE *stream);
536 int mp_fwrite(mp_int *a, int radix, FILE *stream);
537
538 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
539 #define mp_raw_size(mp) mp_signed_bin_size(mp)
540 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
541 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
542 #define mp_mag_size(mp) mp_unsigned_bin_size(mp)
543 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
544
545 #define mp_tobinary(M, S) mp_toradix((M), (S), 2)
546 #define mp_tooctal(M, S) mp_toradix((M), (S), 8)
547 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
548 #define mp_tohex(M, S) mp_toradix((M), (S), 16)
549
550 /* lowlevel functions, do not call! */
551 int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
552 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
553 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
554 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
555 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
556 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
557 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
558 int fast_s_mp_sqr(mp_int *a, mp_int *b);
559 int s_mp_sqr(mp_int *a, mp_int *b);
560 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
561 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
562 int mp_karatsuba_sqr(mp_int *a, mp_int *b);
563 int mp_toom_sqr(mp_int *a, mp_int *b);
564 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
565 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
566 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
567 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
568 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
569 void bn_reverse(unsigned char *s, int len);
570
571 extern const char *mp_s_rmap;
572
573 #ifdef __cplusplus
574 }
575 #endif
576
577 #endif
578