Mercurial > dropbear
comparison libtommath/bn_mp_invmod_slow.c @ 1655:f52919ffd3b1
update ltm to 1.1.0 and enable FIPS 186.4 compliant key-generation (#79)
* make key-generation compliant to FIPS 186.4
* fix includes in tommath_class.h
* update fuzzcorpus instead of error-out
* fixup fuzzing make-targets
* update Makefile.in
* apply necessary patches to ltm sources
* clean-up not required ltm files
* update to vanilla ltm 1.1.0
this already only contains the required files
* remove set/get double
author | Steffen Jaeckel <s_jaeckel@gmx.de> |
---|---|
date | Mon, 16 Sep 2019 15:50:38 +0200 |
parents | 8bba51a55704 |
children |
comparison
equal
deleted
inserted
replaced
1654:cc0fc5131c5c | 1655:f52919ffd3b1 |
---|---|
1 #include <tommath_private.h> | 1 #include "tommath_private.h" |
2 #ifdef BN_MP_INVMOD_SLOW_C | 2 #ifdef BN_MP_INVMOD_SLOW_C |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | 3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
4 * | 4 * |
5 * LibTomMath is a library that provides multiple-precision | 5 * LibTomMath is a library that provides multiple-precision |
6 * integer arithmetic as well as number theoretic functionality. | 6 * integer arithmetic as well as number theoretic functionality. |
7 * | 7 * |
8 * The library was designed directly after the MPI library by | 8 * The library was designed directly after the MPI library by |
9 * Michael Fromberger but has been written from scratch with | 9 * Michael Fromberger but has been written from scratch with |
10 * additional optimizations in place. | 10 * additional optimizations in place. |
11 * | 11 * |
12 * The library is free for all purposes without any express | 12 * SPDX-License-Identifier: Unlicense |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://libtom.org | |
16 */ | 13 */ |
17 | 14 |
18 /* hac 14.61, pp608 */ | 15 /* hac 14.61, pp608 */ |
19 int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) | 16 int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c) |
20 { | 17 { |
21 mp_int x, y, u, v, A, B, C, D; | 18 mp_int x, y, u, v, A, B, C, D; |
22 int res; | 19 int res; |
23 | 20 |
24 /* b cannot be negative */ | 21 /* b cannot be negative */ |
25 if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { | 22 if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { |
26 return MP_VAL; | 23 return MP_VAL; |
27 } | 24 } |
28 | 25 |
29 /* init temps */ | 26 /* init temps */ |
30 if ((res = mp_init_multi(&x, &y, &u, &v, | 27 if ((res = mp_init_multi(&x, &y, &u, &v, |
31 &A, &B, &C, &D, NULL)) != MP_OKAY) { | 28 &A, &B, &C, &D, NULL)) != MP_OKAY) { |
32 return res; | 29 return res; |
33 } | 30 } |
34 | 31 |
35 /* x = a, y = b */ | 32 /* x = a, y = b */ |
36 if ((res = mp_mod(a, b, &x)) != MP_OKAY) { | 33 if ((res = mp_mod(a, b, &x)) != MP_OKAY) { |
37 goto LBL_ERR; | 34 goto LBL_ERR; |
38 } | 35 } |
39 if ((res = mp_copy (b, &y)) != MP_OKAY) { | 36 if ((res = mp_copy(b, &y)) != MP_OKAY) { |
40 goto LBL_ERR; | 37 goto LBL_ERR; |
41 } | 38 } |
42 | 39 |
43 /* 2. [modified] if x,y are both even then return an error! */ | 40 /* 2. [modified] if x,y are both even then return an error! */ |
44 if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) { | 41 if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) { |
45 res = MP_VAL; | 42 res = MP_VAL; |
46 goto LBL_ERR; | 43 goto LBL_ERR; |
47 } | 44 } |
48 | 45 |
49 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | 46 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
50 if ((res = mp_copy (&x, &u)) != MP_OKAY) { | 47 if ((res = mp_copy(&x, &u)) != MP_OKAY) { |
51 goto LBL_ERR; | 48 goto LBL_ERR; |
52 } | 49 } |
53 if ((res = mp_copy (&y, &v)) != MP_OKAY) { | 50 if ((res = mp_copy(&y, &v)) != MP_OKAY) { |
54 goto LBL_ERR; | 51 goto LBL_ERR; |
55 } | 52 } |
56 mp_set (&A, 1); | 53 mp_set(&A, 1uL); |
57 mp_set (&D, 1); | 54 mp_set(&D, 1uL); |
58 | 55 |
59 top: | 56 top: |
60 /* 4. while u is even do */ | 57 /* 4. while u is even do */ |
61 while (mp_iseven (&u) == MP_YES) { | 58 while (mp_iseven(&u) == MP_YES) { |
62 /* 4.1 u = u/2 */ | 59 /* 4.1 u = u/2 */ |
63 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { | 60 if ((res = mp_div_2(&u, &u)) != MP_OKAY) { |
64 goto LBL_ERR; | |
65 } | |
66 /* 4.2 if A or B is odd then */ | |
67 if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) { | |
68 /* A = (A+y)/2, B = (B-x)/2 */ | |
69 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { | |
70 goto LBL_ERR; | 61 goto LBL_ERR; |
71 } | 62 } |
72 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { | 63 /* 4.2 if A or B is odd then */ |
64 if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) { | |
65 /* A = (A+y)/2, B = (B-x)/2 */ | |
66 if ((res = mp_add(&A, &y, &A)) != MP_OKAY) { | |
67 goto LBL_ERR; | |
68 } | |
69 if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { | |
70 goto LBL_ERR; | |
71 } | |
72 } | |
73 /* A = A/2, B = B/2 */ | |
74 if ((res = mp_div_2(&A, &A)) != MP_OKAY) { | |
73 goto LBL_ERR; | 75 goto LBL_ERR; |
74 } | 76 } |
75 } | 77 if ((res = mp_div_2(&B, &B)) != MP_OKAY) { |
76 /* A = A/2, B = B/2 */ | |
77 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { | |
78 goto LBL_ERR; | |
79 } | |
80 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { | |
81 goto LBL_ERR; | |
82 } | |
83 } | |
84 | |
85 /* 5. while v is even do */ | |
86 while (mp_iseven (&v) == MP_YES) { | |
87 /* 5.1 v = v/2 */ | |
88 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { | |
89 goto LBL_ERR; | |
90 } | |
91 /* 5.2 if C or D is odd then */ | |
92 if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) { | |
93 /* C = (C+y)/2, D = (D-x)/2 */ | |
94 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { | |
95 goto LBL_ERR; | 78 goto LBL_ERR; |
96 } | 79 } |
97 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { | 80 } |
81 | |
82 /* 5. while v is even do */ | |
83 while (mp_iseven(&v) == MP_YES) { | |
84 /* 5.1 v = v/2 */ | |
85 if ((res = mp_div_2(&v, &v)) != MP_OKAY) { | |
98 goto LBL_ERR; | 86 goto LBL_ERR; |
99 } | 87 } |
100 } | 88 /* 5.2 if C or D is odd then */ |
101 /* C = C/2, D = D/2 */ | 89 if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) { |
102 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { | 90 /* C = (C+y)/2, D = (D-x)/2 */ |
91 if ((res = mp_add(&C, &y, &C)) != MP_OKAY) { | |
92 goto LBL_ERR; | |
93 } | |
94 if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { | |
95 goto LBL_ERR; | |
96 } | |
97 } | |
98 /* C = C/2, D = D/2 */ | |
99 if ((res = mp_div_2(&C, &C)) != MP_OKAY) { | |
100 goto LBL_ERR; | |
101 } | |
102 if ((res = mp_div_2(&D, &D)) != MP_OKAY) { | |
103 goto LBL_ERR; | |
104 } | |
105 } | |
106 | |
107 /* 6. if u >= v then */ | |
108 if (mp_cmp(&u, &v) != MP_LT) { | |
109 /* u = u - v, A = A - C, B = B - D */ | |
110 if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { | |
111 goto LBL_ERR; | |
112 } | |
113 | |
114 if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) { | |
115 goto LBL_ERR; | |
116 } | |
117 | |
118 if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { | |
119 goto LBL_ERR; | |
120 } | |
121 } else { | |
122 /* v - v - u, C = C - A, D = D - B */ | |
123 if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { | |
124 goto LBL_ERR; | |
125 } | |
126 | |
127 if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) { | |
128 goto LBL_ERR; | |
129 } | |
130 | |
131 if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { | |
132 goto LBL_ERR; | |
133 } | |
134 } | |
135 | |
136 /* if not zero goto step 4 */ | |
137 if (mp_iszero(&u) == MP_NO) | |
138 goto top; | |
139 | |
140 /* now a = C, b = D, gcd == g*v */ | |
141 | |
142 /* if v != 1 then there is no inverse */ | |
143 if (mp_cmp_d(&v, 1uL) != MP_EQ) { | |
144 res = MP_VAL; | |
103 goto LBL_ERR; | 145 goto LBL_ERR; |
104 } | 146 } |
105 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { | |
106 goto LBL_ERR; | |
107 } | |
108 } | |
109 | 147 |
110 /* 6. if u >= v then */ | 148 /* if its too low */ |
111 if (mp_cmp (&u, &v) != MP_LT) { | 149 while (mp_cmp_d(&C, 0uL) == MP_LT) { |
112 /* u = u - v, A = A - C, B = B - D */ | |
113 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { | |
114 goto LBL_ERR; | |
115 } | |
116 | |
117 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { | |
118 goto LBL_ERR; | |
119 } | |
120 | |
121 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { | |
122 goto LBL_ERR; | |
123 } | |
124 } else { | |
125 /* v - v - u, C = C - A, D = D - B */ | |
126 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { | |
127 goto LBL_ERR; | |
128 } | |
129 | |
130 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { | |
131 goto LBL_ERR; | |
132 } | |
133 | |
134 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { | |
135 goto LBL_ERR; | |
136 } | |
137 } | |
138 | |
139 /* if not zero goto step 4 */ | |
140 if (mp_iszero (&u) == MP_NO) | |
141 goto top; | |
142 | |
143 /* now a = C, b = D, gcd == g*v */ | |
144 | |
145 /* if v != 1 then there is no inverse */ | |
146 if (mp_cmp_d (&v, 1) != MP_EQ) { | |
147 res = MP_VAL; | |
148 goto LBL_ERR; | |
149 } | |
150 | |
151 /* if its too low */ | |
152 while (mp_cmp_d(&C, 0) == MP_LT) { | |
153 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { | 150 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { |
154 goto LBL_ERR; | 151 goto LBL_ERR; |
155 } | 152 } |
156 } | 153 } |
157 | 154 |
158 /* too big */ | 155 /* too big */ |
159 while (mp_cmp_mag(&C, b) != MP_LT) { | 156 while (mp_cmp_mag(&C, b) != MP_LT) { |
160 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { | 157 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { |
161 goto LBL_ERR; | 158 goto LBL_ERR; |
162 } | 159 } |
163 } | 160 } |
164 | 161 |
165 /* C is now the inverse */ | 162 /* C is now the inverse */ |
166 mp_exch (&C, c); | 163 mp_exch(&C, c); |
167 res = MP_OKAY; | 164 res = MP_OKAY; |
168 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); | 165 LBL_ERR: |
169 return res; | 166 mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL); |
167 return res; | |
170 } | 168 } |
171 #endif | 169 #endif |
172 | 170 |
173 /* ref: $Format:%D$ */ | 171 /* ref: HEAD -> master, tag: v1.1.0 */ |
174 /* git commit: $Format:%H$ */ | 172 /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ |
175 /* commit time: $Format:%ai$ */ | 173 /* commit time: 2019-01-28 20:32:32 +0100 */ |