comparison libtommath/bn_s_mp_exptmod.c @ 1655:f52919ffd3b1

update ltm to 1.1.0 and enable FIPS 186.4 compliant key-generation (#79) * make key-generation compliant to FIPS 186.4 * fix includes in tommath_class.h * update fuzzcorpus instead of error-out * fixup fuzzing make-targets * update Makefile.in * apply necessary patches to ltm sources * clean-up not required ltm files * update to vanilla ltm 1.1.0 this already only contains the required files * remove set/get double
author Steffen Jaeckel <s_jaeckel@gmx.de>
date Mon, 16 Sep 2019 15:50:38 +0200
parents 8bba51a55704
children 1051e4eea25a
comparison
equal deleted inserted replaced
1654:cc0fc5131c5c 1655:f52919ffd3b1
1 #include <tommath_private.h> 1 #include "tommath_private.h"
2 #ifdef BN_S_MP_EXPTMOD_C 2 #ifdef BN_S_MP_EXPTMOD_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis 3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4 * 4 *
5 * LibTomMath is a library that provides multiple-precision 5 * LibTomMath is a library that provides multiple-precision
6 * integer arithmetic as well as number theoretic functionality. 6 * integer arithmetic as well as number theoretic functionality.
7 * 7 *
8 * The library was designed directly after the MPI library by 8 * The library was designed directly after the MPI library by
9 * Michael Fromberger but has been written from scratch with 9 * Michael Fromberger but has been written from scratch with
10 * additional optimizations in place. 10 * additional optimizations in place.
11 * 11 *
12 * The library is free for all purposes without any express 12 * SPDX-License-Identifier: Unlicense
13 * guarantee it works.
14 *
15 * Tom St Denis, [email protected], http://libtom.org
16 */ 13 */
14
17 #ifdef MP_LOW_MEM 15 #ifdef MP_LOW_MEM
18 #define TAB_SIZE 32 16 # define TAB_SIZE 32
19 #else 17 #else
20 #define TAB_SIZE 256 18 # define TAB_SIZE 256
21 #endif 19 #endif
22 20
23 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) 21 int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
24 { 22 {
25 mp_int M[TAB_SIZE], res, mu; 23 mp_int M[TAB_SIZE], res, mu;
26 mp_digit buf; 24 mp_digit buf;
27 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; 25 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
28 int (*redux)(mp_int*,mp_int*,mp_int*); 26 int (*redux)(mp_int *x, const mp_int *m, const mp_int *mu);
29 27
30 /* find window size */ 28 /* find window size */
31 x = mp_count_bits (X); 29 x = mp_count_bits(X);
32 if (x <= 7) { 30 if (x <= 7) {
33 winsize = 2; 31 winsize = 2;
34 } else if (x <= 36) { 32 } else if (x <= 36) {
35 winsize = 3; 33 winsize = 3;
36 } else if (x <= 140) { 34 } else if (x <= 140) {
37 winsize = 4; 35 winsize = 4;
38 } else if (x <= 450) { 36 } else if (x <= 450) {
39 winsize = 5; 37 winsize = 5;
40 } else if (x <= 1303) { 38 } else if (x <= 1303) {
41 winsize = 6; 39 winsize = 6;
42 } else if (x <= 3529) { 40 } else if (x <= 3529) {
43 winsize = 7; 41 winsize = 7;
44 } else { 42 } else {
45 winsize = 8; 43 winsize = 8;
46 } 44 }
47 45
48 #ifdef MP_LOW_MEM 46 #ifdef MP_LOW_MEM
49 if (winsize > 5) { 47 if (winsize > 5) {
50 winsize = 5; 48 winsize = 5;
51 } 49 }
52 #endif 50 #endif
53 51
54 /* init M array */ 52 /* init M array */
55 /* init first cell */ 53 /* init first cell */
56 if ((err = mp_init(&M[1])) != MP_OKAY) { 54 if ((err = mp_init(&M[1])) != MP_OKAY) {
57 return err;
58 }
59
60 /* now init the second half of the array */
61 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
62 if ((err = mp_init(&M[x])) != MP_OKAY) {
63 for (y = 1<<(winsize-1); y < x; y++) {
64 mp_clear (&M[y]);
65 }
66 mp_clear(&M[1]);
67 return err; 55 return err;
68 } 56 }
69 } 57
70 58 /* now init the second half of the array */
71 /* create mu, used for Barrett reduction */ 59 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
72 if ((err = mp_init (&mu)) != MP_OKAY) { 60 if ((err = mp_init(&M[x])) != MP_OKAY) {
73 goto LBL_M; 61 for (y = 1<<(winsize-1); y < x; y++) {
74 } 62 mp_clear(&M[y]);
75 63 }
76 if (redmode == 0) { 64 mp_clear(&M[1]);
77 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { 65 return err;
78 goto LBL_MU; 66 }
79 } 67 }
80 redux = mp_reduce; 68
81 } else { 69 /* create mu, used for Barrett reduction */
82 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { 70 if ((err = mp_init(&mu)) != MP_OKAY) {
83 goto LBL_MU; 71 goto LBL_M;
84 } 72 }
85 redux = mp_reduce_2k_l; 73
86 } 74 if (redmode == 0) {
87 75 if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) {
88 /* create M table 76 goto LBL_MU;
89 * 77 }
90 * The M table contains powers of the base, 78 redux = mp_reduce;
91 * e.g. M[x] = G**x mod P 79 } else {
92 * 80 if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) {
93 * The first half of the table is not 81 goto LBL_MU;
94 * computed though accept for M[0] and M[1] 82 }
95 */ 83 redux = mp_reduce_2k_l;
96 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { 84 }
97 goto LBL_MU; 85
98 } 86 /* create M table
99 87 *
100 /* compute the value at M[1<<(winsize-1)] by squaring 88 * The M table contains powers of the base,
101 * M[1] (winsize-1) times 89 * e.g. M[x] = G**x mod P
102 */ 90 *
103 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { 91 * The first half of the table is not
104 goto LBL_MU; 92 * computed though accept for M[0] and M[1]
105 } 93 */
106 94 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
107 for (x = 0; x < (winsize - 1); x++) {
108 /* square it */
109 if ((err = mp_sqr (&M[1 << (winsize - 1)],
110 &M[1 << (winsize - 1)])) != MP_OKAY) {
111 goto LBL_MU; 95 goto LBL_MU;
112 } 96 }
113 97
114 /* reduce modulo P */ 98 /* compute the value at M[1<<(winsize-1)] by squaring
115 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { 99 * M[1] (winsize-1) times
100 */
101 if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
116 goto LBL_MU; 102 goto LBL_MU;
117 } 103 }
118 } 104
119 105 for (x = 0; x < (winsize - 1); x++) {
120 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) 106 /* square it */
121 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) 107 if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)],
122 */ 108 &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) {
123 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { 109 goto LBL_MU;
124 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { 110 }
111
112 /* reduce modulo P */
113 if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
114 goto LBL_MU;
115 }
116 }
117
118 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
119 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
120 */
121 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
122 if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
123 goto LBL_MU;
124 }
125 if ((err = redux(&M[x], P, &mu)) != MP_OKAY) {
126 goto LBL_MU;
127 }
128 }
129
130 /* setup result */
131 if ((err = mp_init(&res)) != MP_OKAY) {
125 goto LBL_MU; 132 goto LBL_MU;
126 } 133 }
127 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { 134 mp_set(&res, 1uL);
128 goto LBL_MU; 135
129 } 136 /* set initial mode and bit cnt */
130 } 137 mode = 0;
131 138 bitcnt = 1;
132 /* setup result */ 139 buf = 0;
133 if ((err = mp_init (&res)) != MP_OKAY) { 140 digidx = X->used - 1;
134 goto LBL_MU; 141 bitcpy = 0;
135 } 142 bitbuf = 0;
136 mp_set (&res, 1); 143
137 144 for (;;) {
138 /* set initial mode and bit cnt */ 145 /* grab next digit as required */
139 mode = 0; 146 if (--bitcnt == 0) {
140 bitcnt = 1; 147 /* if digidx == -1 we are out of digits */
141 buf = 0; 148 if (digidx == -1) {
142 digidx = X->used - 1; 149 break;
143 bitcpy = 0; 150 }
144 bitbuf = 0; 151 /* read next digit and reset the bitcnt */
145 152 buf = X->dp[digidx--];
146 for (;;) { 153 bitcnt = (int)DIGIT_BIT;
147 /* grab next digit as required */ 154 }
148 if (--bitcnt == 0) { 155
149 /* if digidx == -1 we are out of digits */ 156 /* grab the next msb from the exponent */
150 if (digidx == -1) { 157 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
151 break; 158 buf <<= (mp_digit)1;
152 } 159
153 /* read next digit and reset the bitcnt */ 160 /* if the bit is zero and mode == 0 then we ignore it
154 buf = X->dp[digidx--]; 161 * These represent the leading zero bits before the first 1 bit
155 bitcnt = (int) DIGIT_BIT; 162 * in the exponent. Technically this opt is not required but it
156 } 163 * does lower the # of trivial squaring/reductions used
157 164 */
158 /* grab the next msb from the exponent */ 165 if ((mode == 0) && (y == 0)) {
159 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; 166 continue;
160 buf <<= (mp_digit)1; 167 }
161 168
162 /* if the bit is zero and mode == 0 then we ignore it 169 /* if the bit is zero and mode == 1 then we square */
163 * These represent the leading zero bits before the first 1 bit 170 if ((mode == 1) && (y == 0)) {
164 * in the exponent. Technically this opt is not required but it 171 if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
165 * does lower the # of trivial squaring/reductions used 172 goto LBL_RES;
166 */ 173 }
167 if ((mode == 0) && (y == 0)) { 174 if ((err = redux(&res, P, &mu)) != MP_OKAY) {
168 continue; 175 goto LBL_RES;
169 } 176 }
170 177 continue;
171 /* if the bit is zero and mode == 1 then we square */ 178 }
172 if ((mode == 1) && (y == 0)) { 179
173 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 180 /* else we add it to the window */
174 goto LBL_RES; 181 bitbuf |= (y << (winsize - ++bitcpy));
175 } 182 mode = 2;
176 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 183
177 goto LBL_RES; 184 if (bitcpy == winsize) {
178 } 185 /* ok window is filled so square as required and multiply */
179 continue; 186 /* square first */
180 } 187 for (x = 0; x < winsize; x++) {
181 188 if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
182 /* else we add it to the window */ 189 goto LBL_RES;
183 bitbuf |= (y << (winsize - ++bitcpy)); 190 }
184 mode = 2; 191 if ((err = redux(&res, P, &mu)) != MP_OKAY) {
185 192 goto LBL_RES;
186 if (bitcpy == winsize) { 193 }
187 /* ok window is filled so square as required and multiply */ 194 }
188 /* square first */ 195
189 for (x = 0; x < winsize; x++) { 196 /* then multiply */
190 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 197 if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
191 goto LBL_RES; 198 goto LBL_RES;
192 } 199 }
193 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 200 if ((err = redux(&res, P, &mu)) != MP_OKAY) {
194 goto LBL_RES; 201 goto LBL_RES;
195 } 202 }
196 } 203
197 204 /* empty window and reset */
198 /* then multiply */ 205 bitcpy = 0;
199 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { 206 bitbuf = 0;
200 goto LBL_RES; 207 mode = 1;
201 } 208 }
202 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 209 }
203 goto LBL_RES; 210
204 } 211 /* if bits remain then square/multiply */
205 212 if ((mode == 2) && (bitcpy > 0)) {
206 /* empty window and reset */ 213 /* square then multiply if the bit is set */
207 bitcpy = 0; 214 for (x = 0; x < bitcpy; x++) {
208 bitbuf = 0; 215 if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
209 mode = 1; 216 goto LBL_RES;
210 } 217 }
211 } 218 if ((err = redux(&res, P, &mu)) != MP_OKAY) {
212 219 goto LBL_RES;
213 /* if bits remain then square/multiply */ 220 }
214 if ((mode == 2) && (bitcpy > 0)) { 221
215 /* square then multiply if the bit is set */ 222 bitbuf <<= 1;
216 for (x = 0; x < bitcpy; x++) { 223 if ((bitbuf & (1 << winsize)) != 0) {
217 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 224 /* then multiply */
218 goto LBL_RES; 225 if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
219 } 226 goto LBL_RES;
220 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 227 }
221 goto LBL_RES; 228 if ((err = redux(&res, P, &mu)) != MP_OKAY) {
222 } 229 goto LBL_RES;
223 230 }
224 bitbuf <<= 1; 231 }
225 if ((bitbuf & (1 << winsize)) != 0) { 232 }
226 /* then multiply */ 233 }
227 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { 234
228 goto LBL_RES; 235 mp_exch(&res, Y);
229 } 236 err = MP_OKAY;
230 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 237 LBL_RES:
231 goto LBL_RES; 238 mp_clear(&res);
232 } 239 LBL_MU:
233 } 240 mp_clear(&mu);
234 }
235 }
236
237 mp_exch (&res, Y);
238 err = MP_OKAY;
239 LBL_RES:mp_clear (&res);
240 LBL_MU:mp_clear (&mu);
241 LBL_M: 241 LBL_M:
242 mp_clear(&M[1]); 242 mp_clear(&M[1]);
243 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 243 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
244 mp_clear (&M[x]); 244 mp_clear(&M[x]);
245 } 245 }
246 return err; 246 return err;
247 } 247 }
248 #endif 248 #endif
249 249
250 /* ref: $Format:%D$ */ 250 /* ref: HEAD -> master, tag: v1.1.0 */
251 /* git commit: $Format:%H$ */ 251 /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
252 /* commit time: $Format:%ai$ */ 252 /* commit time: 2019-01-28 20:32:32 +0100 */