Mercurial > dropbear
comparison libtommath/bn_s_mp_sqr.c @ 1655:f52919ffd3b1
update ltm to 1.1.0 and enable FIPS 186.4 compliant key-generation (#79)
* make key-generation compliant to FIPS 186.4
* fix includes in tommath_class.h
* update fuzzcorpus instead of error-out
* fixup fuzzing make-targets
* update Makefile.in
* apply necessary patches to ltm sources
* clean-up not required ltm files
* update to vanilla ltm 1.1.0
this already only contains the required files
* remove set/get double
author | Steffen Jaeckel <s_jaeckel@gmx.de> |
---|---|
date | Mon, 16 Sep 2019 15:50:38 +0200 |
parents | 8bba51a55704 |
children | 1051e4eea25a |
comparison
equal
deleted
inserted
replaced
1654:cc0fc5131c5c | 1655:f52919ffd3b1 |
---|---|
1 #include <tommath_private.h> | 1 #include "tommath_private.h" |
2 #ifdef BN_S_MP_SQR_C | 2 #ifdef BN_S_MP_SQR_C |
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis | 3 /* LibTomMath, multiple-precision integer library -- Tom St Denis |
4 * | 4 * |
5 * LibTomMath is a library that provides multiple-precision | 5 * LibTomMath is a library that provides multiple-precision |
6 * integer arithmetic as well as number theoretic functionality. | 6 * integer arithmetic as well as number theoretic functionality. |
7 * | 7 * |
8 * The library was designed directly after the MPI library by | 8 * The library was designed directly after the MPI library by |
9 * Michael Fromberger but has been written from scratch with | 9 * Michael Fromberger but has been written from scratch with |
10 * additional optimizations in place. | 10 * additional optimizations in place. |
11 * | 11 * |
12 * The library is free for all purposes without any express | 12 * SPDX-License-Identifier: Unlicense |
13 * guarantee it works. | |
14 * | |
15 * Tom St Denis, [email protected], http://libtom.org | |
16 */ | 13 */ |
17 | 14 |
18 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ | 15 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ |
19 int s_mp_sqr (mp_int * a, mp_int * b) | 16 int s_mp_sqr(const mp_int *a, mp_int *b) |
20 { | 17 { |
21 mp_int t; | 18 mp_int t; |
22 int res, ix, iy, pa; | 19 int res, ix, iy, pa; |
23 mp_word r; | 20 mp_word r; |
24 mp_digit u, tmpx, *tmpt; | 21 mp_digit u, tmpx, *tmpt; |
25 | 22 |
26 pa = a->used; | 23 pa = a->used; |
27 if ((res = mp_init_size (&t, (2 * pa) + 1)) != MP_OKAY) { | 24 if ((res = mp_init_size(&t, (2 * pa) + 1)) != MP_OKAY) { |
28 return res; | 25 return res; |
29 } | 26 } |
30 | 27 |
31 /* default used is maximum possible size */ | 28 /* default used is maximum possible size */ |
32 t.used = (2 * pa) + 1; | 29 t.used = (2 * pa) + 1; |
33 | 30 |
34 for (ix = 0; ix < pa; ix++) { | 31 for (ix = 0; ix < pa; ix++) { |
35 /* first calculate the digit at 2*ix */ | 32 /* first calculate the digit at 2*ix */ |
36 /* calculate double precision result */ | 33 /* calculate double precision result */ |
37 r = (mp_word)t.dp[2*ix] + | 34 r = (mp_word)t.dp[2*ix] + |
38 ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]); | 35 ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]); |
39 | 36 |
40 /* store lower part in result */ | 37 /* store lower part in result */ |
41 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); | 38 t.dp[ix+ix] = (mp_digit)(r & (mp_word)MP_MASK); |
42 | 39 |
43 /* get the carry */ | 40 /* get the carry */ |
44 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | 41 u = (mp_digit)(r >> (mp_word)DIGIT_BIT); |
45 | 42 |
46 /* left hand side of A[ix] * A[iy] */ | 43 /* left hand side of A[ix] * A[iy] */ |
47 tmpx = a->dp[ix]; | 44 tmpx = a->dp[ix]; |
48 | 45 |
49 /* alias for where to store the results */ | 46 /* alias for where to store the results */ |
50 tmpt = t.dp + ((2 * ix) + 1); | 47 tmpt = t.dp + ((2 * ix) + 1); |
51 | |
52 for (iy = ix + 1; iy < pa; iy++) { | |
53 /* first calculate the product */ | |
54 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); | |
55 | 48 |
56 /* now calculate the double precision result, note we use | 49 for (iy = ix + 1; iy < pa; iy++) { |
57 * addition instead of *2 since it's easier to optimize | 50 /* first calculate the product */ |
58 */ | 51 r = (mp_word)tmpx * (mp_word)a->dp[iy]; |
59 r = ((mp_word) *tmpt) + r + r + ((mp_word) u); | |
60 | 52 |
61 /* store lower part */ | 53 /* now calculate the double precision result, note we use |
62 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | 54 * addition instead of *2 since it's easier to optimize |
55 */ | |
56 r = (mp_word)*tmpt + r + r + (mp_word)u; | |
63 | 57 |
64 /* get carry */ | 58 /* store lower part */ |
65 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | 59 *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); |
66 } | |
67 /* propagate upwards */ | |
68 while (u != ((mp_digit) 0)) { | |
69 r = ((mp_word) *tmpt) + ((mp_word) u); | |
70 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | |
71 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | |
72 } | |
73 } | |
74 | 60 |
75 mp_clamp (&t); | 61 /* get carry */ |
76 mp_exch (&t, b); | 62 u = (mp_digit)(r >> (mp_word)DIGIT_BIT); |
77 mp_clear (&t); | 63 } |
78 return MP_OKAY; | 64 /* propagate upwards */ |
65 while (u != 0uL) { | |
66 r = (mp_word)*tmpt + (mp_word)u; | |
67 *tmpt++ = (mp_digit)(r & (mp_word)MP_MASK); | |
68 u = (mp_digit)(r >> (mp_word)DIGIT_BIT); | |
69 } | |
70 } | |
71 | |
72 mp_clamp(&t); | |
73 mp_exch(&t, b); | |
74 mp_clear(&t); | |
75 return MP_OKAY; | |
79 } | 76 } |
80 #endif | 77 #endif |
81 | 78 |
82 /* ref: $Format:%D$ */ | 79 /* ref: HEAD -> master, tag: v1.1.0 */ |
83 /* git commit: $Format:%H$ */ | 80 /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ |
84 /* commit time: $Format:%ai$ */ | 81 /* commit time: 2019-01-28 20:32:32 +0100 */ |