Mercurial > dropbear
comparison bn_mp_is_square.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* Check if remainders are possible squares - fast exclude non-squares */ | |
18 static const char rem_128[128] = { | |
19 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
20 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
21 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
22 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
23 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
24 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
25 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, | |
26 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 | |
27 }; | |
28 | |
29 static const char rem_105[105] = { | |
30 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, | |
31 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, | |
32 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, | |
33 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, | |
34 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, | |
35 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, | |
36 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 | |
37 }; | |
38 | |
39 /* Store non-zero to ret if arg is square, and zero if not */ | |
40 int mp_is_square(mp_int *arg,int *ret) | |
41 { | |
42 int res; | |
43 mp_digit c; | |
44 mp_int t; | |
45 unsigned long r; | |
46 | |
47 /* Default to Non-square :) */ | |
48 *ret = MP_NO; | |
49 | |
50 if (arg->sign == MP_NEG) { | |
51 return MP_VAL; | |
52 } | |
53 | |
54 /* digits used? (TSD) */ | |
55 if (arg->used == 0) { | |
56 return MP_OKAY; | |
57 } | |
58 | |
59 /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ | |
60 if (rem_128[127 & DIGIT(arg,0)] == 1) { | |
61 return MP_OKAY; | |
62 } | |
63 | |
64 /* Next check mod 105 (3*5*7) */ | |
65 if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) { | |
66 return res; | |
67 } | |
68 if (rem_105[c] == 1) { | |
69 return MP_OKAY; | |
70 } | |
71 | |
72 /* product of primes less than 2^31 */ | |
73 if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { | |
74 return res; | |
75 } | |
76 if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) { | |
77 goto ERR; | |
78 } | |
79 r = mp_get_int(&t); | |
80 /* Check for other prime modules, note it's not an ERROR but we must | |
81 * free "t" so the easiest way is to goto ERR. We know that res | |
82 * is already equal to MP_OKAY from the mp_mod call | |
83 */ | |
84 if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; | |
85 if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; | |
86 if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; | |
87 if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR; | |
88 if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR; | |
89 if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR; | |
90 if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR; | |
91 | |
92 /* Final check - is sqr(sqrt(arg)) == arg ? */ | |
93 if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { | |
94 goto ERR; | |
95 } | |
96 if ((res = mp_sqr(&t,&t)) != MP_OKAY) { | |
97 goto ERR; | |
98 } | |
99 | |
100 *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO; | |
101 ERR:mp_clear(&t); | |
102 return res; | |
103 } |