Mercurial > dropbear
comparison bn_mp_montgomery_reduce.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* computes xR**-1 == x (mod N) via Montgomery Reduction */ | |
18 int | |
19 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | |
20 { | |
21 int ix, res, digs; | |
22 mp_digit mu; | |
23 | |
24 /* can the fast reduction [comba] method be used? | |
25 * | |
26 * Note that unlike in mp_mul you're safely allowed *less* | |
27 * than the available columns [255 per default] since carries | |
28 * are fixed up in the inner loop. | |
29 */ | |
30 digs = n->used * 2 + 1; | |
31 if ((digs < MP_WARRAY) && | |
32 n->used < | |
33 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | |
34 return fast_mp_montgomery_reduce (x, n, rho); | |
35 } | |
36 | |
37 /* grow the input as required */ | |
38 if (x->alloc < digs) { | |
39 if ((res = mp_grow (x, digs)) != MP_OKAY) { | |
40 return res; | |
41 } | |
42 } | |
43 x->used = digs; | |
44 | |
45 for (ix = 0; ix < n->used; ix++) { | |
46 /* mu = ai * rho mod b | |
47 * | |
48 * The value of rho must be precalculated via | |
49 * bn_mp_montgomery_setup() such that | |
50 * it equals -1/n0 mod b this allows the | |
51 * following inner loop to reduce the | |
52 * input one digit at a time | |
53 */ | |
54 mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); | |
55 | |
56 /* a = a + mu * m * b**i */ | |
57 { | |
58 register int iy; | |
59 register mp_digit *tmpn, *tmpx, u; | |
60 register mp_word r; | |
61 | |
62 /* alias for digits of the modulus */ | |
63 tmpn = n->dp; | |
64 | |
65 /* alias for the digits of x [the input] */ | |
66 tmpx = x->dp + ix; | |
67 | |
68 /* set the carry to zero */ | |
69 u = 0; | |
70 | |
71 /* Multiply and add in place */ | |
72 for (iy = 0; iy < n->used; iy++) { | |
73 /* compute product and sum */ | |
74 r = ((mp_word)mu) * ((mp_word)*tmpn++) + | |
75 ((mp_word) u) + ((mp_word) * tmpx); | |
76 | |
77 /* get carry */ | |
78 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | |
79 | |
80 /* fix digit */ | |
81 *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); | |
82 } | |
83 /* At this point the ix'th digit of x should be zero */ | |
84 | |
85 | |
86 /* propagate carries upwards as required*/ | |
87 while (u) { | |
88 *tmpx += u; | |
89 u = *tmpx >> DIGIT_BIT; | |
90 *tmpx++ &= MP_MASK; | |
91 } | |
92 } | |
93 } | |
94 | |
95 /* at this point the n.used'th least | |
96 * significant digits of x are all zero | |
97 * which means we can shift x to the | |
98 * right by n.used digits and the | |
99 * residue is unchanged. | |
100 */ | |
101 | |
102 /* x = x/b**n.used */ | |
103 mp_clamp(x); | |
104 mp_rshd (x, n->used); | |
105 | |
106 /* if x >= n then x = x - n */ | |
107 if (mp_cmp_mag (x, n) != MP_LT) { | |
108 return s_mp_sub (x, n, x); | |
109 } | |
110 | |
111 return MP_OKAY; | |
112 } |