Mercurial > dropbear
comparison bn_mp_n_root.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* find the n'th root of an integer | |
18 * | |
19 * Result found such that (c)**b <= a and (c+1)**b > a | |
20 * | |
21 * This algorithm uses Newton's approximation | |
22 * x[i+1] = x[i] - f(x[i])/f'(x[i]) | |
23 * which will find the root in log(N) time where | |
24 * each step involves a fair bit. This is not meant to | |
25 * find huge roots [square and cube, etc]. | |
26 */ | |
27 int mp_n_root (mp_int * a, mp_digit b, mp_int * c) | |
28 { | |
29 mp_int t1, t2, t3; | |
30 int res, neg; | |
31 | |
32 /* input must be positive if b is even */ | |
33 if ((b & 1) == 0 && a->sign == MP_NEG) { | |
34 return MP_VAL; | |
35 } | |
36 | |
37 if ((res = mp_init (&t1)) != MP_OKAY) { | |
38 return res; | |
39 } | |
40 | |
41 if ((res = mp_init (&t2)) != MP_OKAY) { | |
42 goto __T1; | |
43 } | |
44 | |
45 if ((res = mp_init (&t3)) != MP_OKAY) { | |
46 goto __T2; | |
47 } | |
48 | |
49 /* if a is negative fudge the sign but keep track */ | |
50 neg = a->sign; | |
51 a->sign = MP_ZPOS; | |
52 | |
53 /* t2 = 2 */ | |
54 mp_set (&t2, 2); | |
55 | |
56 do { | |
57 /* t1 = t2 */ | |
58 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { | |
59 goto __T3; | |
60 } | |
61 | |
62 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ | |
63 | |
64 /* t3 = t1**(b-1) */ | |
65 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { | |
66 goto __T3; | |
67 } | |
68 | |
69 /* numerator */ | |
70 /* t2 = t1**b */ | |
71 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { | |
72 goto __T3; | |
73 } | |
74 | |
75 /* t2 = t1**b - a */ | |
76 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { | |
77 goto __T3; | |
78 } | |
79 | |
80 /* denominator */ | |
81 /* t3 = t1**(b-1) * b */ | |
82 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { | |
83 goto __T3; | |
84 } | |
85 | |
86 /* t3 = (t1**b - a)/(b * t1**(b-1)) */ | |
87 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { | |
88 goto __T3; | |
89 } | |
90 | |
91 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { | |
92 goto __T3; | |
93 } | |
94 } while (mp_cmp (&t1, &t2) != MP_EQ); | |
95 | |
96 /* result can be off by a few so check */ | |
97 for (;;) { | |
98 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { | |
99 goto __T3; | |
100 } | |
101 | |
102 if (mp_cmp (&t2, a) == MP_GT) { | |
103 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { | |
104 goto __T3; | |
105 } | |
106 } else { | |
107 break; | |
108 } | |
109 } | |
110 | |
111 /* reset the sign of a first */ | |
112 a->sign = neg; | |
113 | |
114 /* set the result */ | |
115 mp_exch (&t1, c); | |
116 | |
117 /* set the sign of the result */ | |
118 c->sign = neg; | |
119 | |
120 res = MP_OKAY; | |
121 | |
122 __T3:mp_clear (&t3); | |
123 __T2:mp_clear (&t2); | |
124 __T1:mp_clear (&t1); | |
125 return res; | |
126 } |