Mercurial > dropbear
comparison bn_mp_prime_is_prime.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* performs a variable number of rounds of Miller-Rabin | |
18 * | |
19 * Probability of error after t rounds is no more than | |
20 * (1/4)^t when 1 <= t <= PRIME_SIZE | |
21 * | |
22 * Sets result to 1 if probably prime, 0 otherwise | |
23 */ | |
24 int mp_prime_is_prime (mp_int * a, int t, int *result) | |
25 { | |
26 mp_int b; | |
27 int ix, err, res; | |
28 | |
29 /* default to no */ | |
30 *result = MP_NO; | |
31 | |
32 /* valid value of t? */ | |
33 if (t <= 0 || t > PRIME_SIZE) { | |
34 return MP_VAL; | |
35 } | |
36 | |
37 /* is the input equal to one of the primes in the table? */ | |
38 for (ix = 0; ix < PRIME_SIZE; ix++) { | |
39 if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) { | |
40 *result = 1; | |
41 return MP_OKAY; | |
42 } | |
43 } | |
44 | |
45 /* first perform trial division */ | |
46 if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { | |
47 return err; | |
48 } | |
49 | |
50 /* return if it was trivially divisible */ | |
51 if (res == MP_YES) { | |
52 return MP_OKAY; | |
53 } | |
54 | |
55 /* now perform the miller-rabin rounds */ | |
56 if ((err = mp_init (&b)) != MP_OKAY) { | |
57 return err; | |
58 } | |
59 | |
60 for (ix = 0; ix < t; ix++) { | |
61 /* set the prime */ | |
62 mp_set (&b, __prime_tab[ix]); | |
63 | |
64 if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { | |
65 goto __B; | |
66 } | |
67 | |
68 if (res == MP_NO) { | |
69 goto __B; | |
70 } | |
71 } | |
72 | |
73 /* passed the test */ | |
74 *result = MP_YES; | |
75 __B:mp_clear (&b); | |
76 return err; | |
77 } |