Mercurial > dropbear
comparison bn_mp_prime_next_prime.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* finds the next prime after the number "a" using "t" trials | |
18 * of Miller-Rabin. | |
19 * | |
20 * bbs_style = 1 means the prime must be congruent to 3 mod 4 | |
21 */ | |
22 int mp_prime_next_prime(mp_int *a, int t, int bbs_style) | |
23 { | |
24 int err, res, x, y; | |
25 mp_digit res_tab[PRIME_SIZE], step, kstep; | |
26 mp_int b; | |
27 | |
28 /* ensure t is valid */ | |
29 if (t <= 0 || t > PRIME_SIZE) { | |
30 return MP_VAL; | |
31 } | |
32 | |
33 /* force positive */ | |
34 a->sign = MP_ZPOS; | |
35 | |
36 /* simple algo if a is less than the largest prime in the table */ | |
37 if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) { | |
38 /* find which prime it is bigger than */ | |
39 for (x = PRIME_SIZE - 2; x >= 0; x--) { | |
40 if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) { | |
41 if (bbs_style == 1) { | |
42 /* ok we found a prime smaller or | |
43 * equal [so the next is larger] | |
44 * | |
45 * however, the prime must be | |
46 * congruent to 3 mod 4 | |
47 */ | |
48 if ((__prime_tab[x + 1] & 3) != 3) { | |
49 /* scan upwards for a prime congruent to 3 mod 4 */ | |
50 for (y = x + 1; y < PRIME_SIZE; y++) { | |
51 if ((__prime_tab[y] & 3) == 3) { | |
52 mp_set(a, __prime_tab[y]); | |
53 return MP_OKAY; | |
54 } | |
55 } | |
56 } | |
57 } else { | |
58 mp_set(a, __prime_tab[x + 1]); | |
59 return MP_OKAY; | |
60 } | |
61 } | |
62 } | |
63 /* at this point a maybe 1 */ | |
64 if (mp_cmp_d(a, 1) == MP_EQ) { | |
65 mp_set(a, 2); | |
66 return MP_OKAY; | |
67 } | |
68 /* fall through to the sieve */ | |
69 } | |
70 | |
71 /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ | |
72 if (bbs_style == 1) { | |
73 kstep = 4; | |
74 } else { | |
75 kstep = 2; | |
76 } | |
77 | |
78 /* at this point we will use a combination of a sieve and Miller-Rabin */ | |
79 | |
80 if (bbs_style == 1) { | |
81 /* if a mod 4 != 3 subtract the correct value to make it so */ | |
82 if ((a->dp[0] & 3) != 3) { | |
83 if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; | |
84 } | |
85 } else { | |
86 if (mp_iseven(a) == 1) { | |
87 /* force odd */ | |
88 if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { | |
89 return err; | |
90 } | |
91 } | |
92 } | |
93 | |
94 /* generate the restable */ | |
95 for (x = 1; x < PRIME_SIZE; x++) { | |
96 if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) { | |
97 return err; | |
98 } | |
99 } | |
100 | |
101 /* init temp used for Miller-Rabin Testing */ | |
102 if ((err = mp_init(&b)) != MP_OKAY) { | |
103 return err; | |
104 } | |
105 | |
106 for (;;) { | |
107 /* skip to the next non-trivially divisible candidate */ | |
108 step = 0; | |
109 do { | |
110 /* y == 1 if any residue was zero [e.g. cannot be prime] */ | |
111 y = 0; | |
112 | |
113 /* increase step to next candidate */ | |
114 step += kstep; | |
115 | |
116 /* compute the new residue without using division */ | |
117 for (x = 1; x < PRIME_SIZE; x++) { | |
118 /* add the step to each residue */ | |
119 res_tab[x] += kstep; | |
120 | |
121 /* subtract the modulus [instead of using division] */ | |
122 if (res_tab[x] >= __prime_tab[x]) { | |
123 res_tab[x] -= __prime_tab[x]; | |
124 } | |
125 | |
126 /* set flag if zero */ | |
127 if (res_tab[x] == 0) { | |
128 y = 1; | |
129 } | |
130 } | |
131 } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); | |
132 | |
133 /* add the step */ | |
134 if ((err = mp_add_d(a, step, a)) != MP_OKAY) { | |
135 goto __ERR; | |
136 } | |
137 | |
138 /* if didn't pass sieve and step == MAX then skip test */ | |
139 if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { | |
140 continue; | |
141 } | |
142 | |
143 /* is this prime? */ | |
144 for (x = 0; x < t; x++) { | |
145 mp_set(&b, __prime_tab[t]); | |
146 if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { | |
147 goto __ERR; | |
148 } | |
149 if (res == MP_NO) { | |
150 break; | |
151 } | |
152 } | |
153 | |
154 if (res == MP_YES) { | |
155 break; | |
156 } | |
157 } | |
158 | |
159 err = MP_OKAY; | |
160 __ERR: | |
161 mp_clear(&b); | |
162 return err; | |
163 } | |
164 |