Mercurial > dropbear
comparison bn_mp_reduce.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* reduces x mod m, assumes 0 < x < m**2, mu is | |
18 * precomputed via mp_reduce_setup. | |
19 * From HAC pp.604 Algorithm 14.42 | |
20 */ | |
21 int | |
22 mp_reduce (mp_int * x, mp_int * m, mp_int * mu) | |
23 { | |
24 mp_int q; | |
25 int res, um = m->used; | |
26 | |
27 /* q = x */ | |
28 if ((res = mp_init_copy (&q, x)) != MP_OKAY) { | |
29 return res; | |
30 } | |
31 | |
32 /* q1 = x / b**(k-1) */ | |
33 mp_rshd (&q, um - 1); | |
34 | |
35 /* according to HAC this optimization is ok */ | |
36 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { | |
37 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { | |
38 goto CLEANUP; | |
39 } | |
40 } else { | |
41 if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) { | |
42 goto CLEANUP; | |
43 } | |
44 } | |
45 | |
46 /* q3 = q2 / b**(k+1) */ | |
47 mp_rshd (&q, um + 1); | |
48 | |
49 /* x = x mod b**(k+1), quick (no division) */ | |
50 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { | |
51 goto CLEANUP; | |
52 } | |
53 | |
54 /* q = q * m mod b**(k+1), quick (no division) */ | |
55 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { | |
56 goto CLEANUP; | |
57 } | |
58 | |
59 /* x = x - q */ | |
60 if ((res = mp_sub (x, &q, x)) != MP_OKAY) { | |
61 goto CLEANUP; | |
62 } | |
63 | |
64 /* If x < 0, add b**(k+1) to it */ | |
65 if (mp_cmp_d (x, 0) == MP_LT) { | |
66 mp_set (&q, 1); | |
67 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) | |
68 goto CLEANUP; | |
69 if ((res = mp_add (x, &q, x)) != MP_OKAY) | |
70 goto CLEANUP; | |
71 } | |
72 | |
73 /* Back off if it's too big */ | |
74 while (mp_cmp (x, m) != MP_LT) { | |
75 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { | |
76 goto CLEANUP; | |
77 } | |
78 } | |
79 | |
80 CLEANUP: | |
81 mp_clear (&q); | |
82 | |
83 return res; | |
84 } |