Mercurial > dropbear
comparison bn_s_mp_exptmod.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 #ifdef MP_LOW_MEM | |
18 #define TAB_SIZE 32 | |
19 #else | |
20 #define TAB_SIZE 256 | |
21 #endif | |
22 | |
23 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | |
24 { | |
25 mp_int M[TAB_SIZE], res, mu; | |
26 mp_digit buf; | |
27 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | |
28 | |
29 /* find window size */ | |
30 x = mp_count_bits (X); | |
31 if (x <= 7) { | |
32 winsize = 2; | |
33 } else if (x <= 36) { | |
34 winsize = 3; | |
35 } else if (x <= 140) { | |
36 winsize = 4; | |
37 } else if (x <= 450) { | |
38 winsize = 5; | |
39 } else if (x <= 1303) { | |
40 winsize = 6; | |
41 } else if (x <= 3529) { | |
42 winsize = 7; | |
43 } else { | |
44 winsize = 8; | |
45 } | |
46 | |
47 #ifdef MP_LOW_MEM | |
48 if (winsize > 5) { | |
49 winsize = 5; | |
50 } | |
51 #endif | |
52 | |
53 /* init M array */ | |
54 /* init first cell */ | |
55 if ((err = mp_init(&M[1])) != MP_OKAY) { | |
56 return err; | |
57 } | |
58 | |
59 /* now init the second half of the array */ | |
60 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | |
61 if ((err = mp_init(&M[x])) != MP_OKAY) { | |
62 for (y = 1<<(winsize-1); y < x; y++) { | |
63 mp_clear (&M[y]); | |
64 } | |
65 mp_clear(&M[1]); | |
66 return err; | |
67 } | |
68 } | |
69 | |
70 /* create mu, used for Barrett reduction */ | |
71 if ((err = mp_init (&mu)) != MP_OKAY) { | |
72 goto __M; | |
73 } | |
74 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | |
75 goto __MU; | |
76 } | |
77 | |
78 /* create M table | |
79 * | |
80 * The M table contains powers of the base, | |
81 * e.g. M[x] = G**x mod P | |
82 * | |
83 * The first half of the table is not | |
84 * computed though accept for M[0] and M[1] | |
85 */ | |
86 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { | |
87 goto __MU; | |
88 } | |
89 | |
90 /* compute the value at M[1<<(winsize-1)] by squaring | |
91 * M[1] (winsize-1) times | |
92 */ | |
93 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { | |
94 goto __MU; | |
95 } | |
96 | |
97 for (x = 0; x < (winsize - 1); x++) { | |
98 if ((err = mp_sqr (&M[1 << (winsize - 1)], | |
99 &M[1 << (winsize - 1)])) != MP_OKAY) { | |
100 goto __MU; | |
101 } | |
102 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | |
103 goto __MU; | |
104 } | |
105 } | |
106 | |
107 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) | |
108 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) | |
109 */ | |
110 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { | |
111 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | |
112 goto __MU; | |
113 } | |
114 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { | |
115 goto __MU; | |
116 } | |
117 } | |
118 | |
119 /* setup result */ | |
120 if ((err = mp_init (&res)) != MP_OKAY) { | |
121 goto __MU; | |
122 } | |
123 mp_set (&res, 1); | |
124 | |
125 /* set initial mode and bit cnt */ | |
126 mode = 0; | |
127 bitcnt = 1; | |
128 buf = 0; | |
129 digidx = X->used - 1; | |
130 bitcpy = 0; | |
131 bitbuf = 0; | |
132 | |
133 for (;;) { | |
134 /* grab next digit as required */ | |
135 if (--bitcnt == 0) { | |
136 /* if digidx == -1 we are out of digits */ | |
137 if (digidx == -1) { | |
138 break; | |
139 } | |
140 /* read next digit and reset the bitcnt */ | |
141 buf = X->dp[digidx--]; | |
142 bitcnt = (int) DIGIT_BIT; | |
143 } | |
144 | |
145 /* grab the next msb from the exponent */ | |
146 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; | |
147 buf <<= (mp_digit)1; | |
148 | |
149 /* if the bit is zero and mode == 0 then we ignore it | |
150 * These represent the leading zero bits before the first 1 bit | |
151 * in the exponent. Technically this opt is not required but it | |
152 * does lower the # of trivial squaring/reductions used | |
153 */ | |
154 if (mode == 0 && y == 0) { | |
155 continue; | |
156 } | |
157 | |
158 /* if the bit is zero and mode == 1 then we square */ | |
159 if (mode == 1 && y == 0) { | |
160 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
161 goto __RES; | |
162 } | |
163 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | |
164 goto __RES; | |
165 } | |
166 continue; | |
167 } | |
168 | |
169 /* else we add it to the window */ | |
170 bitbuf |= (y << (winsize - ++bitcpy)); | |
171 mode = 2; | |
172 | |
173 if (bitcpy == winsize) { | |
174 /* ok window is filled so square as required and multiply */ | |
175 /* square first */ | |
176 for (x = 0; x < winsize; x++) { | |
177 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
178 goto __RES; | |
179 } | |
180 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | |
181 goto __RES; | |
182 } | |
183 } | |
184 | |
185 /* then multiply */ | |
186 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | |
187 goto __RES; | |
188 } | |
189 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | |
190 goto __RES; | |
191 } | |
192 | |
193 /* empty window and reset */ | |
194 bitcpy = 0; | |
195 bitbuf = 0; | |
196 mode = 1; | |
197 } | |
198 } | |
199 | |
200 /* if bits remain then square/multiply */ | |
201 if (mode == 2 && bitcpy > 0) { | |
202 /* square then multiply if the bit is set */ | |
203 for (x = 0; x < bitcpy; x++) { | |
204 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
205 goto __RES; | |
206 } | |
207 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | |
208 goto __RES; | |
209 } | |
210 | |
211 bitbuf <<= 1; | |
212 if ((bitbuf & (1 << winsize)) != 0) { | |
213 /* then multiply */ | |
214 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | |
215 goto __RES; | |
216 } | |
217 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | |
218 goto __RES; | |
219 } | |
220 } | |
221 } | |
222 } | |
223 | |
224 mp_exch (&res, Y); | |
225 err = MP_OKAY; | |
226 __RES:mp_clear (&res); | |
227 __MU:mp_clear (&mu); | |
228 __M: | |
229 mp_clear(&M[1]); | |
230 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | |
231 mp_clear (&M[x]); | |
232 } | |
233 return err; | |
234 } |