Mercurial > dropbear
diff libtomcrypt/src/headers/tomcrypt_math.h @ 382:0cbe8f6dbf9e
propagate from branch 'au.asn.ucc.matt.ltc.dropbear' (head 2af22fb4e878750b88f80f90d439b316d229796f)
to branch 'au.asn.ucc.matt.dropbear' (head 02c413252c90e9de8e03d91e9939dde3029f5c0a)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 02:41:05 +0000 |
parents | |
children | a05fb340a95d |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtomcrypt/src/headers/tomcrypt_math.h Thu Jan 11 02:41:05 2007 +0000 @@ -0,0 +1,500 @@ +/** math functions **/ + +#define LTC_MP_LT -1 +#define LTC_MP_EQ 0 +#define LTC_MP_GT 1 + +#define LTC_MP_NO 0 +#define LTC_MP_YES 1 + +#ifndef MECC + typedef void ecc_point; +#endif + +#ifndef MRSA + typedef void rsa_key; +#endif + +/** math descriptor */ +typedef struct { + /** Name of the math provider */ + char *name; + + /** Bits per digit, amount of bits must fit in an unsigned long */ + int bits_per_digit; + +/* ---- init/deinit functions ---- */ + + /** initialize a bignum + @param a The number to initialize + @return CRYPT_OK on success + */ + int (*init)(void **a); + + /** init copy + @param dst The number to initialize and write to + @param src The number to copy from + @return CRYPT_OK on success + */ + int (*init_copy)(void **dst, void *src); + + /** deinit + @param a The number to free + @return CRYPT_OK on success + */ + void (*deinit)(void *a); + +/* ---- data movement ---- */ + + /** negate + @param src The number to negate + @param dst The destination + @return CRYPT_OK on success + */ + int (*neg)(void *src, void *dst); + + /** copy + @param src The number to copy from + @param dst The number to write to + @return CRYPT_OK on success + */ + int (*copy)(void *src, void *dst); + +/* ---- trivial low level functions ---- */ + + /** set small constant + @param a Number to write to + @param n Source upto bits_per_digit (actually meant for very small constants) + @return CRYPT_OK on succcess + */ + int (*set_int)(void *a, unsigned long n); + + /** get small constant + @param a Number to read, only fetches upto bits_per_digit from the number + @return The lower bits_per_digit of the integer (unsigned) + */ + unsigned long (*get_int)(void *a); + + /** get digit n + @param a The number to read from + @param n The number of the digit to fetch + @return The bits_per_digit sized n'th digit of a + */ + unsigned long (*get_digit)(void *a, int n); + + /** Get the number of digits that represent the number + @param a The number to count + @return The number of digits used to represent the number + */ + int (*get_digit_count)(void *a); + + /** compare two integers + @param a The left side integer + @param b The right side integer + @return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison) + */ + int (*compare)(void *a, void *b); + + /** compare against int + @param a The left side integer + @param b The right side integer (upto bits_per_digit) + @return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison) + */ + int (*compare_d)(void *a, unsigned long n); + + /** Count the number of bits used to represent the integer + @param a The integer to count + @return The number of bits required to represent the integer + */ + int (*count_bits)(void * a); + + /** Count the number of LSB bits which are zero + @param a The integer to count + @return The number of contiguous zero LSB bits + */ + int (*count_lsb_bits)(void *a); + + /** Compute a power of two + @param a The integer to store the power in + @param n The power of two you want to store (a = 2^n) + @return CRYPT_OK on success + */ + int (*twoexpt)(void *a , int n); + +/* ---- radix conversions ---- */ + + /** read ascii string + @param a The integer to store into + @param str The string to read + @param radix The radix the integer has been represented in (2-64) + @return CRYPT_OK on success + */ + int (*read_radix)(void *a, const char *str, int radix); + + /** write number to string + @param a The integer to store + @param str The destination for the string + @param radix The radix the integer is to be represented in (2-64) + @return CRYPT_OK on success + */ + int (*write_radix)(void *a, char *str, int radix); + + /** get size as unsigned char string + @param a The integer to get the size (when stored in array of octets) + @return The length of the integer + */ + unsigned long (*unsigned_size)(void *a); + + /** store an integer as an array of octets + @param src The integer to store + @param dst The buffer to store the integer in + @return CRYPT_OK on success + */ + int (*unsigned_write)(void *src, unsigned char *dst); + + /** read an array of octets and store as integer + @param dst The integer to load + @param src The array of octets + @param len The number of octets + @return CRYPT_OK on success + */ + int (*unsigned_read)(void *dst, unsigned char *src, unsigned long len); + +/* ---- basic math ---- */ + + /** add two integers + @param a The first source integer + @param b The second source integer + @param c The destination of "a + b" + @return CRYPT_OK on success + */ + int (*add)(void *a, void *b, void *c); + + + /** add two integers + @param a The first source integer + @param b The second source integer (single digit of upto bits_per_digit in length) + @param c The destination of "a + b" + @return CRYPT_OK on success + */ + int (*addi)(void *a, unsigned long b, void *c); + + /** subtract two integers + @param a The first source integer + @param b The second source integer + @param c The destination of "a - b" + @return CRYPT_OK on success + */ + int (*sub)(void *a, void *b, void *c); + + /** subtract two integers + @param a The first source integer + @param b The second source integer (single digit of upto bits_per_digit in length) + @param c The destination of "a - b" + @return CRYPT_OK on success + */ + int (*subi)(void *a, unsigned long b, void *c); + + /** multiply two integers + @param a The first source integer + @param b The second source integer (single digit of upto bits_per_digit in length) + @param c The destination of "a * b" + @return CRYPT_OK on success + */ + int (*mul)(void *a, void *b, void *c); + + /** multiply two integers + @param a The first source integer + @param b The second source integer (single digit of upto bits_per_digit in length) + @param c The destination of "a * b" + @return CRYPT_OK on success + */ + int (*muli)(void *a, unsigned long b, void *c); + + /** Square an integer + @param a The integer to square + @param b The destination + @return CRYPT_OK on success + */ + int (*sqr)(void *a, void *b); + + /** Divide an integer + @param a The dividend + @param b The divisor + @param c The quotient (can be NULL to signify don't care) + @param d The remainder (can be NULL to signify don't care) + @return CRYPT_OK on success + */ + int (*mpdiv)(void *a, void *b, void *c, void *d); + + /** divide by two + @param a The integer to divide (shift right) + @param b The destination + @return CRYPT_OK on success + */ + int (*div_2)(void *a, void *b); + + /** Get remainder (small value) + @param a The integer to reduce + @param b The modulus (upto bits_per_digit in length) + @param c The destination for the residue + @return CRYPT_OK on success + */ + int (*modi)(void *a, unsigned long b, unsigned long *c); + + /** gcd + @param a The first integer + @param b The second integer + @param c The destination for (a, b) + @return CRYPT_OK on success + */ + int (*gcd)(void *a, void *b, void *c); + + /** lcm + @param a The first integer + @param b The second integer + @param c The destination for [a, b] + @return CRYPT_OK on success + */ + int (*lcm)(void *a, void *b, void *c); + + /** Modular multiplication + @param a The first source + @param b The second source + @param c The modulus + @param d The destination (a*b mod c) + @return CRYPT_OK on success + */ + int (*mulmod)(void *a, void *b, void *c, void *d); + + /** Modular squaring + @param a The first source + @param b The modulus + @param c The destination (a*a mod b) + @return CRYPT_OK on success + */ + int (*sqrmod)(void *a, void *b, void *c); + + /** Modular inversion + @param a The value to invert + @param b The modulus + @param c The destination (1/a mod b) + @return CRYPT_OK on success + */ + int (*invmod)(void *, void *, void *); + +/* ---- reduction ---- */ + + /** setup montgomery + @param a The modulus + @param b The destination for the reduction digit + @return CRYPT_OK on success + */ + int (*montgomery_setup)(void *a, void **b); + + /** get normalization value + @param a The destination for the normalization value + @param b The modulus + @return CRYPT_OK on success + */ + int (*montgomery_normalization)(void *a, void *b); + + /** reduce a number + @param a The number [and dest] to reduce + @param b The modulus + @param c The value "b" from montgomery_setup() + @return CRYPT_OK on success + */ + int (*montgomery_reduce)(void *a, void *b, void *c); + + /** clean up (frees memory) + @param a The value "b" from montgomery_setup() + @return CRYPT_OK on success + */ + void (*montgomery_deinit)(void *a); + +/* ---- exponentiation ---- */ + + /** Modular exponentiation + @param a The base integer + @param b The power (can be negative) integer + @param c The modulus integer + @param d The destination + @return CRYPT_OK on success + */ + int (*exptmod)(void *a, void *b, void *c, void *d); + + /** Primality testing + @param a The integer to test + @param b The destination of the result (FP_YES if prime) + @return CRYPT_OK on success + */ + int (*isprime)(void *a, int *b); + +/* ---- (optional) ecc point math ---- */ + + /** ECC GF(p) point multiplication (from the NIST curves) + @param k The integer to multiply the point by + @param G The point to multiply + @param R The destination for kG + @param modulus The modulus for the field + @param map Boolean indicated whether to map back to affine or not (can be ignored if you work in affine only) + @return CRYPT_OK on success + */ + int (*ecc_ptmul)(void *k, ecc_point *G, ecc_point *R, void *modulus, int map); + + /** ECC GF(p) point addition + @param P The first point + @param Q The second point + @param R The destination of P + Q + @param modulus The modulus + @param mp The "b" value from montgomery_setup() + @return CRYPT_OK on success + */ + int (*ecc_ptadd)(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp); + + /** ECC GF(p) point double + @param P The first point + @param R The destination of 2P + @param modulus The modulus + @param mp The "b" value from montgomery_setup() + @return CRYPT_OK on success + */ + int (*ecc_ptdbl)(ecc_point *P, ecc_point *R, void *modulus, void *mp); + + /** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z^2, y/z^3, 1) + @param P The point to map + @param modulus The modulus + @param mp The "b" value from montgomery_setup() + @return CRYPT_OK on success + @remark The mapping can be different but keep in mind a ecc_point only has three + integers (x,y,z) so if you use a different mapping you have to make it fit. + */ + int (*ecc_map)(ecc_point *P, void *modulus, void *mp); + + /** Computes kA*A + kB*B = C using Shamir's Trick + @param A First point to multiply + @param kA What to multiple A by + @param B Second point to multiply + @param kB What to multiple B by + @param C [out] Destination point (can overlap with A or B + @param modulus Modulus for curve + @return CRYPT_OK on success + */ + int (*ecc_mul2add)(ecc_point *A, void *kA, + ecc_point *B, void *kB, + ecc_point *C, + void *modulus); + +/* ---- (optional) rsa optimized math (for internal CRT) ---- */ + + /** RSA Key Generation + @param prng An active PRNG state + @param wprng The index of the PRNG desired + @param size The size of the modulus (key size) desired (octets) + @param e The "e" value (public key). e==65537 is a good choice + @param key [out] Destination of a newly created private key pair + @return CRYPT_OK if successful, upon error all allocated ram is freed + */ + int (*rsa_keygen)(prng_state *prng, int wprng, int size, long e, rsa_key *key); + + + /** RSA exponentiation + @param in The octet array representing the base + @param inlen The length of the input + @param out The destination (to be stored in an octet array format) + @param outlen The length of the output buffer and the resulting size (zero padded to the size of the modulus) + @param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA + @param key The RSA key to use + @return CRYPT_OK on success + */ + int (*rsa_me)(const unsigned char *in, unsigned long inlen, + unsigned char *out, unsigned long *outlen, int which, + rsa_key *key); +} ltc_math_descriptor; + +extern ltc_math_descriptor ltc_mp; + +int ltc_init_multi(void **a, ...); +void ltc_deinit_multi(void *a, ...); + +#ifdef LTM_DESC +extern const ltc_math_descriptor ltm_desc; +#endif + +#ifdef TFM_DESC +extern const ltc_math_descriptor tfm_desc; +#endif + +#ifdef GMP_DESC +extern const ltc_math_descriptor gmp_desc; +#endif + +#if !defined(DESC_DEF_ONLY) && defined(LTC_SOURCE) + +#define MP_DIGIT_BIT ltc_mp.bits_per_digit + +/* some handy macros */ +#define mp_init(a) ltc_mp.init(a) +#define mp_init_multi ltc_init_multi +#define mp_clear(a) ltc_mp.deinit(a) +#define mp_clear_multi ltc_deinit_multi +#define mp_init_copy(a, b) ltc_mp.init_copy(a, b) + +#define mp_neg(a, b) ltc_mp.neg(a, b) +#define mp_copy(a, b) ltc_mp.copy(a, b) + +#define mp_set(a, b) ltc_mp.set_int(a, b) +#define mp_set_int(a, b) ltc_mp.set_int(a, b) +#define mp_get_int(a) ltc_mp.get_int(a) +#define mp_get_digit(a, n) ltc_mp.get_digit(a, n) +#define mp_get_digit_count(a) ltc_mp.get_digit_count(a) +#define mp_cmp(a, b) ltc_mp.compare(a, b) +#define mp_cmp_d(a, b) ltc_mp.compare_d(a, b) +#define mp_count_bits(a) ltc_mp.count_bits(a) +#define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a) +#define mp_2expt(a, b) ltc_mp.twoexpt(a, b) + +#define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c) +#define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c) +#define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a) +#define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b) +#define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c) + +#define mp_add(a, b, c) ltc_mp.add(a, b, c) +#define mp_add_d(a, b, c) ltc_mp.addi(a, b, c) +#define mp_sub(a, b, c) ltc_mp.sub(a, b, c) +#define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c) +#define mp_mul(a, b, c) ltc_mp.mul(a, b, c) +#define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c) +#define mp_sqr(a, b) ltc_mp.sqr(a, b) +#define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d) +#define mp_div_2(a, b) ltc_mp.div_2(a, b) +#define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c) +#define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c) +#define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c) +#define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c) + +#define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d) +#define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c) +#define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c) + +#define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b) +#define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b) +#define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c) +#define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a) + +#define mp_exptmod(a,b,c,d) ltc_mp.exptmod(a,b,c,d) +#define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, c) + +#define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO) +#define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO) +#define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while(0); + +#define mp_tohex(a, b) mp_toradix(a, b, 16) + +#endif + +/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_math.h,v $ */ +/* $Revision: 1.43 $ */ +/* $Date: 2006/12/02 19:23:13 $ */