diff src/ciphers/aes/aes.c @ 191:1c15b283127b libtomcrypt-orig

Import of libtomcrypt 1.02 with manual path rename rearrangement etc
author Matt Johnston <matt@ucc.asn.au>
date Fri, 06 May 2005 13:23:02 +0000
parents
children 9cc34777b479 39d5d58461d6
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ciphers/aes/aes.c	Fri May 06 13:23:02 2005 +0000
@@ -0,0 +1,749 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://libtomcrypt.org
+ */
+
+/* AES implementation by Tom St Denis
+ *
+ * Derived from the Public Domain source code by
+ 
+---  
+  * rijndael-alg-fst.c
+  *
+  * @version 3.0 (December 2000)
+  *
+  * Optimised ANSI C code for the Rijndael cipher (now AES)
+  *
+  * @author Vincent Rijmen <[email protected]>
+  * @author Antoon Bosselaers <[email protected]>
+  * @author Paulo Barreto <[email protected]>
+---
+ */
+/**
+  @file aes.c
+  Implementation of AES
+*/   
+
+#include "tomcrypt.h"
+
+#ifdef RIJNDAEL
+
+#ifndef ENCRYPT_ONLY 
+
+#define SETUP    rijndael_setup
+#define ECB_ENC  rijndael_ecb_encrypt
+#define ECB_DEC  rijndael_ecb_decrypt
+#define ECB_DONE rijndael_done
+#define ECB_TEST rijndael_test
+#define ECB_KS   rijndael_keysize
+
+const struct ltc_cipher_descriptor rijndael_desc =
+{
+    "rijndael",
+    6,
+    16, 32, 16, 10,
+    SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
+    NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+const struct ltc_cipher_descriptor aes_desc =
+{
+    "aes",
+    6,
+    16, 32, 16, 10,
+    SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
+    NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+#else
+
+#define SETUP    rijndael_enc_setup
+#define ECB_ENC  rijndael_enc_ecb_encrypt
+#define ECB_KS   rijndael_enc_keysize
+#define ECB_DONE rijndael_enc_done
+
+const struct ltc_cipher_descriptor rijndael_enc_desc =
+{
+    "rijndael",
+    6,
+    16, 32, 16, 10,
+    SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
+    NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+const struct ltc_cipher_descriptor aes_enc_desc =
+{
+    "aes",
+    6,
+    16, 32, 16, 10,
+    SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
+    NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+#endif
+
+#include "aes_tab.c"
+
+static ulong32 setup_mix(ulong32 temp)
+{
+   return (Te4_3[byte(temp, 2)]) ^
+          (Te4_2[byte(temp, 1)]) ^
+          (Te4_1[byte(temp, 0)]) ^
+          (Te4_0[byte(temp, 3)]);
+}
+
+#ifndef ENCRYPT_ONLY
+#ifdef LTC_SMALL_CODE
+static ulong32 setup_mix2(ulong32 temp)
+{
+   return Td0(255 & Te4[byte(temp, 3)]) ^
+          Td1(255 & Te4[byte(temp, 2)]) ^
+          Td2(255 & Te4[byte(temp, 1)]) ^
+          Td3(255 & Te4[byte(temp, 0)]);
+}
+#endif
+#endif
+
+ /**
+    Initialize the AES (Rijndael) block cipher
+    @param key The symmetric key you wish to pass
+    @param keylen The key length in bytes
+    @param num_rounds The number of rounds desired (0 for default)
+    @param skey The key in as scheduled by this function.
+    @return CRYPT_OK if successful
+ */
+int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+    int i, j;
+    ulong32 temp, *rk;
+#ifndef ENCRYPT_ONLY
+    ulong32 *rrk;
+#endif    
+    LTC_ARGCHK(key  != NULL);
+    LTC_ARGCHK(skey != NULL);
+    
+    if (keylen != 16 && keylen != 24 && keylen != 32) {
+       return CRYPT_INVALID_KEYSIZE;
+    }
+    
+    if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
+       return CRYPT_INVALID_ROUNDS;
+    }
+    
+    skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
+        
+    /* setup the forward key */
+    i                 = 0;
+    rk                = skey->rijndael.eK;
+    LOAD32H(rk[0], key     );
+    LOAD32H(rk[1], key +  4);
+    LOAD32H(rk[2], key +  8);
+    LOAD32H(rk[3], key + 12);
+    if (keylen == 16) {
+        j = 44;
+        for (;;) {
+            temp  = rk[3];
+            rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
+            rk[5] = rk[1] ^ rk[4];
+            rk[6] = rk[2] ^ rk[5];
+            rk[7] = rk[3] ^ rk[6];
+            if (++i == 10) {
+               break;
+            }
+            rk += 4;
+        }
+    } else if (keylen == 24) {
+        j = 52;   
+        LOAD32H(rk[4], key + 16);
+        LOAD32H(rk[5], key + 20);
+        for (;;) {
+        #ifdef _MSC_VER
+            temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5]; 
+        #else
+            temp = rk[5];
+        #endif
+            rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
+            rk[ 7] = rk[ 1] ^ rk[ 6];
+            rk[ 8] = rk[ 2] ^ rk[ 7];
+            rk[ 9] = rk[ 3] ^ rk[ 8];
+            if (++i == 8) {
+                break;
+            }
+            rk[10] = rk[ 4] ^ rk[ 9];
+            rk[11] = rk[ 5] ^ rk[10];
+            rk += 6;
+        }
+    } else if (keylen == 32) {
+        j = 60;
+        LOAD32H(rk[4], key + 16);
+        LOAD32H(rk[5], key + 20);
+        LOAD32H(rk[6], key + 24);
+        LOAD32H(rk[7], key + 28);
+        for (;;) {
+        #ifdef _MSC_VER
+            temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7]; 
+        #else
+            temp = rk[7];
+        #endif
+            rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
+            rk[ 9] = rk[ 1] ^ rk[ 8];
+            rk[10] = rk[ 2] ^ rk[ 9];
+            rk[11] = rk[ 3] ^ rk[10];
+            if (++i == 7) {
+                break;
+            }
+            temp = rk[11];
+            rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8));
+            rk[13] = rk[ 5] ^ rk[12];
+            rk[14] = rk[ 6] ^ rk[13];
+            rk[15] = rk[ 7] ^ rk[14];
+            rk += 8;
+        }
+    } else {
+       /* this can't happen */
+       return CRYPT_ERROR;
+    }
+
+#ifndef ENCRYPT_ONLY    
+    /* setup the inverse key now */
+    rk   = skey->rijndael.dK;
+    rrk  = skey->rijndael.eK + j - 4; 
+    
+    /* apply the inverse MixColumn transform to all round keys but the first and the last: */
+    /* copy first */
+    *rk++ = *rrk++;
+    *rk++ = *rrk++;
+    *rk++ = *rrk++;
+    *rk   = *rrk;
+    rk -= 3; rrk -= 3;
+    
+    for (i = 1; i < skey->rijndael.Nr; i++) {
+        rrk -= 4;
+        rk  += 4;
+    #ifdef LTC_SMALL_CODE        
+        temp = rrk[0];
+        rk[0] = setup_mix2(temp);
+        temp = rrk[1];
+        rk[1] = setup_mix2(temp);
+        temp = rrk[2];
+        rk[2] = setup_mix2(temp);
+        temp = rrk[3];
+        rk[3] = setup_mix2(temp);
+     #else
+        temp = rrk[0];
+        rk[0] =
+            Tks0[byte(temp, 3)] ^
+            Tks1[byte(temp, 2)] ^
+            Tks2[byte(temp, 1)] ^
+            Tks3[byte(temp, 0)];
+        temp = rrk[1];
+        rk[1] =
+            Tks0[byte(temp, 3)] ^
+            Tks1[byte(temp, 2)] ^
+            Tks2[byte(temp, 1)] ^
+            Tks3[byte(temp, 0)];
+        temp = rrk[2];
+        rk[2] =
+            Tks0[byte(temp, 3)] ^
+            Tks1[byte(temp, 2)] ^
+            Tks2[byte(temp, 1)] ^
+            Tks3[byte(temp, 0)];
+        temp = rrk[3];
+        rk[3] =
+            Tks0[byte(temp, 3)] ^
+            Tks1[byte(temp, 2)] ^
+            Tks2[byte(temp, 1)] ^
+            Tks3[byte(temp, 0)];
+      #endif            
+     
+    }
+
+    /* copy last */
+    rrk -= 4;
+    rk  += 4;
+    *rk++ = *rrk++;
+    *rk++ = *rrk++;
+    *rk++ = *rrk++;
+    *rk   = *rrk;
+#endif /* ENCRYPT_ONLY */
+
+    return CRYPT_OK;   
+}
+
+/**
+  Encrypts a block of text with AES
+  @param pt The input plaintext (16 bytes)
+  @param ct The output ciphertext (16 bytes)
+  @param skey The key as scheduled
+*/
+#ifdef LTC_CLEAN_STACK
+static void _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) 
+#else
+void ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#endif
+{
+    ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
+    int Nr, r;
+   
+    LTC_ARGCHK(pt != NULL);
+    LTC_ARGCHK(ct != NULL);
+    LTC_ARGCHK(skey != NULL);
+    
+    Nr = skey->rijndael.Nr;
+    rk = skey->rijndael.eK;
+    
+    /*
+     * map byte array block to cipher state
+     * and add initial round key:
+     */
+    LOAD32H(s0, pt      ); s0 ^= rk[0];
+    LOAD32H(s1, pt  +  4); s1 ^= rk[1];
+    LOAD32H(s2, pt  +  8); s2 ^= rk[2];
+    LOAD32H(s3, pt  + 12); s3 ^= rk[3];
+
+
+#ifdef LTC_SMALL_CODE
+
+    for (r = 0; ; r++) {
+        rk += 4;
+        t0 =
+            Te0(byte(s0, 3)) ^
+            Te1(byte(s1, 2)) ^
+            Te2(byte(s2, 1)) ^
+            Te3(byte(s3, 0)) ^
+            rk[0];
+        t1 =
+            Te0(byte(s1, 3)) ^
+            Te1(byte(s2, 2)) ^
+            Te2(byte(s3, 1)) ^
+            Te3(byte(s0, 0)) ^
+            rk[1];
+        t2 =
+            Te0(byte(s2, 3)) ^
+            Te1(byte(s3, 2)) ^
+            Te2(byte(s0, 1)) ^
+            Te3(byte(s1, 0)) ^
+            rk[2];
+        t3 =
+            Te0(byte(s3, 3)) ^
+            Te1(byte(s0, 2)) ^
+            Te2(byte(s1, 1)) ^
+            Te3(byte(s2, 0)) ^
+            rk[3];
+        if (r == Nr-2) { 
+           break;
+        }
+        s0 = t0; s1 = t1; s2 = t2; s3 = t3;
+    }
+    rk += 4;
+
+#else
+
+    /*
+     * Nr - 1 full rounds:
+     */
+    r = Nr >> 1;
+    for (;;) {
+        t0 =
+            Te0(byte(s0, 3)) ^
+            Te1(byte(s1, 2)) ^
+            Te2(byte(s2, 1)) ^
+            Te3(byte(s3, 0)) ^
+            rk[4];
+        t1 =
+            Te0(byte(s1, 3)) ^
+            Te1(byte(s2, 2)) ^
+            Te2(byte(s3, 1)) ^
+            Te3(byte(s0, 0)) ^
+            rk[5];
+        t2 =
+            Te0(byte(s2, 3)) ^
+            Te1(byte(s3, 2)) ^
+            Te2(byte(s0, 1)) ^
+            Te3(byte(s1, 0)) ^
+            rk[6];
+        t3 =
+            Te0(byte(s3, 3)) ^
+            Te1(byte(s0, 2)) ^
+            Te2(byte(s1, 1)) ^
+            Te3(byte(s2, 0)) ^
+            rk[7];
+
+        rk += 8;
+        if (--r == 0) {
+            break;
+        }
+
+        s0 =
+            Te0(byte(t0, 3)) ^
+            Te1(byte(t1, 2)) ^
+            Te2(byte(t2, 1)) ^
+            Te3(byte(t3, 0)) ^
+            rk[0];
+        s1 =
+            Te0(byte(t1, 3)) ^
+            Te1(byte(t2, 2)) ^
+            Te2(byte(t3, 1)) ^
+            Te3(byte(t0, 0)) ^
+            rk[1];
+        s2 =
+            Te0(byte(t2, 3)) ^
+            Te1(byte(t3, 2)) ^
+            Te2(byte(t0, 1)) ^
+            Te3(byte(t1, 0)) ^
+            rk[2];
+        s3 =
+            Te0(byte(t3, 3)) ^
+            Te1(byte(t0, 2)) ^
+            Te2(byte(t1, 1)) ^
+            Te3(byte(t2, 0)) ^
+            rk[3];
+    }
+
+#endif
+
+    /*
+     * apply last round and
+     * map cipher state to byte array block:
+     */
+    s0 =
+        (Te4_3[byte(t0, 3)]) ^
+        (Te4_2[byte(t1, 2)]) ^
+        (Te4_1[byte(t2, 1)]) ^
+        (Te4_0[byte(t3, 0)]) ^
+        rk[0];
+    STORE32H(s0, ct);
+    s1 =
+        (Te4_3[byte(t1, 3)]) ^
+        (Te4_2[byte(t2, 2)]) ^
+        (Te4_1[byte(t3, 1)]) ^
+        (Te4_0[byte(t0, 0)]) ^
+        rk[1];
+    STORE32H(s1, ct+4);
+    s2 =
+        (Te4_3[byte(t2, 3)]) ^
+        (Te4_2[byte(t3, 2)]) ^
+        (Te4_1[byte(t0, 1)]) ^
+        (Te4_0[byte(t1, 0)]) ^
+        rk[2];
+    STORE32H(s2, ct+8);
+    s3 =
+        (Te4_3[byte(t3, 3)]) ^
+        (Te4_2[byte(t0, 2)]) ^
+        (Te4_1[byte(t1, 1)]) ^
+        (Te4_0[byte(t2, 0)]) ^ 
+        rk[3];
+    STORE32H(s3, ct+12);
+}
+
+#ifdef LTC_CLEAN_STACK
+void ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) 
+{
+   _rijndael_ecb_encrypt(pt, ct, skey);
+   burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
+}
+#endif
+
+#ifndef ENCRYPT_ONLY 
+
+/**
+  Decrypts a block of text with AES
+  @param ct The input ciphertext (16 bytes)
+  @param pt The output plaintext (16 bytes)
+  @param skey The key as scheduled 
+*/
+#ifdef LTC_CLEAN_STACK
+static void _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) 
+#else
+void ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#endif
+{
+    ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk;
+    int Nr, r;
+
+    LTC_ARGCHK(pt != NULL);
+    LTC_ARGCHK(ct != NULL);
+    LTC_ARGCHK(skey != NULL);
+    
+    Nr = skey->rijndael.Nr;
+    rk = skey->rijndael.dK;
+
+    /*
+     * map byte array block to cipher state
+     * and add initial round key:
+     */
+    LOAD32H(s0, ct      ); s0 ^= rk[0];
+    LOAD32H(s1, ct  +  4); s1 ^= rk[1];
+    LOAD32H(s2, ct  +  8); s2 ^= rk[2];
+    LOAD32H(s3, ct  + 12); s3 ^= rk[3];
+
+#ifdef LTC_SMALL_CODE
+    for (r = 0; ; r++) {
+        rk += 4;
+        t0 =
+            Td0(byte(s0, 3)) ^
+            Td1(byte(s3, 2)) ^
+            Td2(byte(s2, 1)) ^
+            Td3(byte(s1, 0)) ^
+            rk[0];
+        t1 =
+            Td0(byte(s1, 3)) ^
+            Td1(byte(s0, 2)) ^
+            Td2(byte(s3, 1)) ^
+            Td3(byte(s2, 0)) ^
+            rk[1];
+        t2 =
+            Td0(byte(s2, 3)) ^
+            Td1(byte(s1, 2)) ^
+            Td2(byte(s0, 1)) ^
+            Td3(byte(s3, 0)) ^
+            rk[2];
+        t3 =
+            Td0(byte(s3, 3)) ^
+            Td1(byte(s2, 2)) ^
+            Td2(byte(s1, 1)) ^
+            Td3(byte(s0, 0)) ^
+            rk[3];
+        if (r == Nr-2) {
+           break; 
+        }
+        s0 = t0; s1 = t1; s2 = t2; s3 = t3;
+    }
+    rk += 4;
+
+#else       
+
+    /*
+     * Nr - 1 full rounds:
+     */
+    r = Nr >> 1;
+    for (;;) {
+
+        t0 =
+            Td0(byte(s0, 3)) ^
+            Td1(byte(s3, 2)) ^
+            Td2(byte(s2, 1)) ^
+            Td3(byte(s1, 0)) ^
+            rk[4];
+        t1 =
+            Td0(byte(s1, 3)) ^
+            Td1(byte(s0, 2)) ^
+            Td2(byte(s3, 1)) ^
+            Td3(byte(s2, 0)) ^
+            rk[5];
+        t2 =
+            Td0(byte(s2, 3)) ^
+            Td1(byte(s1, 2)) ^
+            Td2(byte(s0, 1)) ^
+            Td3(byte(s3, 0)) ^
+            rk[6];
+        t3 =
+            Td0(byte(s3, 3)) ^
+            Td1(byte(s2, 2)) ^
+            Td2(byte(s1, 1)) ^
+            Td3(byte(s0, 0)) ^
+            rk[7];
+
+        rk += 8;
+        if (--r == 0) {
+            break;
+        }
+
+
+        s0 =
+            Td0(byte(t0, 3)) ^
+            Td1(byte(t3, 2)) ^
+            Td2(byte(t2, 1)) ^
+            Td3(byte(t1, 0)) ^
+            rk[0];
+        s1 =
+            Td0(byte(t1, 3)) ^
+            Td1(byte(t0, 2)) ^
+            Td2(byte(t3, 1)) ^
+            Td3(byte(t2, 0)) ^
+            rk[1];
+        s2 =
+            Td0(byte(t2, 3)) ^
+            Td1(byte(t1, 2)) ^
+            Td2(byte(t0, 1)) ^
+            Td3(byte(t3, 0)) ^
+            rk[2];
+        s3 =
+            Td0(byte(t3, 3)) ^
+            Td1(byte(t2, 2)) ^
+            Td2(byte(t1, 1)) ^
+            Td3(byte(t0, 0)) ^
+            rk[3];
+    }
+#endif
+
+    /*
+     * apply last round and
+     * map cipher state to byte array block:
+     */
+    s0 =
+        (Td4[byte(t0, 3)] & 0xff000000) ^
+        (Td4[byte(t3, 2)] & 0x00ff0000) ^
+        (Td4[byte(t2, 1)] & 0x0000ff00) ^
+        (Td4[byte(t1, 0)] & 0x000000ff) ^
+        rk[0];
+    STORE32H(s0, pt);
+    s1 =
+        (Td4[byte(t1, 3)] & 0xff000000) ^
+        (Td4[byte(t0, 2)] & 0x00ff0000) ^
+        (Td4[byte(t3, 1)] & 0x0000ff00) ^
+        (Td4[byte(t2, 0)] & 0x000000ff) ^
+        rk[1];
+    STORE32H(s1, pt+4);
+    s2 =
+        (Td4[byte(t2, 3)] & 0xff000000) ^
+        (Td4[byte(t1, 2)] & 0x00ff0000) ^
+        (Td4[byte(t0, 1)] & 0x0000ff00) ^
+        (Td4[byte(t3, 0)] & 0x000000ff) ^
+        rk[2];
+    STORE32H(s2, pt+8);
+    s3 =
+        (Td4[byte(t3, 3)] & 0xff000000) ^
+        (Td4[byte(t2, 2)] & 0x00ff0000) ^
+        (Td4[byte(t1, 1)] & 0x0000ff00) ^
+        (Td4[byte(t0, 0)] & 0x000000ff) ^
+        rk[3];
+    STORE32H(s3, pt+12);
+}
+
+
+#ifdef LTC_CLEAN_STACK
+void ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) 
+{
+   _rijndael_ecb_decrypt(ct, pt, skey);
+   burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
+}
+#endif
+
+/**
+  Performs a self-test of the AES block cipher
+  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int ECB_TEST(void)
+{
+ #ifndef LTC_TEST
+    return CRYPT_NOP;
+ #else    
+ int err;
+ static const struct {
+     int keylen;
+     unsigned char key[32], pt[16], ct[16];
+ } tests[] = {
+    { 16,
+      { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 
+        0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, 
+      { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+        0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+      { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 
+        0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
+    }, { 
+      24,
+      { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 
+        0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
+      { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+        0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+      { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0, 
+        0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
+    }, {
+      32,
+      { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 
+        0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 
+        0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
+      { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+        0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+      { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf, 
+        0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
+    }
+ };
+ 
+ symmetric_key key;
+ unsigned char tmp[2][16];
+ int i, y;
+ 
+ for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
+    zeromem(&key, sizeof(key));
+    if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { 
+       return err;
+    }
+  
+    rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
+    rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
+    if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) { 
+#if 0
+       printf("\n\nTest %d failed\n", i);
+       if (memcmp(tmp[0], tests[i].ct, 16)) {
+          printf("CT: ");
+          for (i = 0; i < 16; i++) {
+             printf("%02x ", tmp[0][i]);
+          }
+          printf("\n");
+       } else {
+          printf("PT: ");
+          for (i = 0; i < 16; i++) {
+             printf("%02x ", tmp[1][i]);
+          }
+          printf("\n");
+       }
+#endif       
+        return CRYPT_FAIL_TESTVECTOR;
+    }
+
+      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+      for (y = 0; y < 16; y++) tmp[0][y] = 0;
+      for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
+      for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
+      for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+ }       
+ return CRYPT_OK;
+ #endif
+}
+
+#endif /* ENCRYPT_ONLY */
+
+
+/** Terminate the context 
+   @param skey    The scheduled key
+*/
+void ECB_DONE(symmetric_key *skey)
+{
+}
+
+
+/**
+  Gets suitable key size
+  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
+  @return CRYPT_OK if the input key size is acceptable.
+*/
+int ECB_KS(int *keysize)
+{
+   LTC_ARGCHK(keysize != NULL);
+
+   if (*keysize < 16)
+      return CRYPT_INVALID_KEYSIZE;
+   if (*keysize < 24) {
+      *keysize = 16;
+      return CRYPT_OK;
+   } else if (*keysize < 32) {
+      *keysize = 24;
+      return CRYPT_OK;
+   } else {
+      *keysize = 32;
+      return CRYPT_OK;
+   }
+}
+
+#endif
+