Mercurial > dropbear
diff bn_mp_exptmod.c @ 1:22d5cf7d4b1a libtommath
Renaming branch
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:23:46 +0000 |
parents | |
children | a96ff234ff19 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_exptmod.c Mon May 31 18:23:46 2004 +0000 @@ -0,0 +1,82 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ +#include <tommath.h> + + +/* this is a shell function that calls either the normal or Montgomery + * exptmod functions. Originally the call to the montgomery code was + * embedded in the normal function but that wasted alot of stack space + * for nothing (since 99% of the time the Montgomery code would be called) + */ +int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) +{ + int dr; + + /* modulus P must be positive */ + if (P->sign == MP_NEG) { + return MP_VAL; + } + + /* if exponent X is negative we have to recurse */ + if (X->sign == MP_NEG) { + mp_int tmpG, tmpX; + int err; + + /* first compute 1/G mod P */ + if ((err = mp_init(&tmpG)) != MP_OKAY) { + return err; + } + if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { + mp_clear(&tmpG); + return err; + } + + /* now get |X| */ + if ((err = mp_init(&tmpX)) != MP_OKAY) { + mp_clear(&tmpG); + return err; + } + if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { + mp_clear_multi(&tmpG, &tmpX, NULL); + return err; + } + + /* and now compute (1/G)**|X| instead of G**X [X < 0] */ + err = mp_exptmod(&tmpG, &tmpX, P, Y); + mp_clear_multi(&tmpG, &tmpX, NULL); + return err; + } + + /* is it a DR modulus? */ + dr = mp_dr_is_modulus(P); + + /* if not, is it a uDR modulus? */ + if (dr == 0) { + dr = mp_reduce_is_2k(P) << 1; + } + + /* if the modulus is odd or dr != 0 use the fast method */ +#ifndef NO_FAST_EXPTMOD + if (mp_isodd (P) == 1 || dr != 0) { + return mp_exptmod_fast (G, X, P, Y, dr); + } + else +#endif + { + /* otherwise use the generic Barrett reduction technique */ + return s_mp_exptmod (G, X, P, Y); + } +} +