diff bn_mp_prime_miller_rabin.c @ 1:22d5cf7d4b1a libtommath

Renaming branch
author Matt Johnston <matt@ucc.asn.au>
date Mon, 31 May 2004 18:23:46 +0000
parents
children d29b64170cf0
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bn_mp_prime_miller_rabin.c	Mon May 31 18:23:46 2004 +0000
@@ -0,0 +1,97 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* Miller-Rabin test of "a" to the base of "b" as described in 
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often 
+ * very much lower.
+ */
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+{
+  mp_int  n1, y, r;
+  int     s, j, err;
+
+  /* default */
+  *result = MP_NO;
+
+  /* ensure b > 1 */
+  if (mp_cmp_d(b, 1) != MP_GT) {
+     return MP_VAL;
+  }     
+
+  /* get n1 = a - 1 */
+  if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
+    return err;
+  }
+  if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
+    goto __N1;
+  }
+
+  /* set 2**s * r = n1 */
+  if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
+    goto __N1;
+  }
+
+  /* count the number of least significant bits
+   * which are zero
+   */
+  s = mp_cnt_lsb(&r);
+
+  /* now divide n - 1 by 2**s */
+  if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
+    goto __R;
+  }
+
+  /* compute y = b**r mod a */
+  if ((err = mp_init (&y)) != MP_OKAY) {
+    goto __R;
+  }
+  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
+    goto __Y;
+  }
+
+  /* if y != 1 and y != n1 do */
+  if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
+    j = 1;
+    /* while j <= s-1 and y != n1 */
+    while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
+      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
+         goto __Y;
+      }
+
+      /* if y == 1 then composite */
+      if (mp_cmp_d (&y, 1) == MP_EQ) {
+         goto __Y;
+      }
+
+      ++j;
+    }
+
+    /* if y != n1 then composite */
+    if (mp_cmp (&y, &n1) != MP_EQ) {
+      goto __Y;
+    }
+  }
+
+  /* probably prime now */
+  *result = MP_YES;
+__Y:mp_clear (&y);
+__R:mp_clear (&r);
+__N1:mp_clear (&n1);
+  return err;
+}