diff libtomcrypt/src/pk/dsa/dsa_make_key.c @ 1511:5916af64acd4 fuzz

merge from main
author Matt Johnston <matt@ucc.asn.au>
date Sat, 17 Feb 2018 19:29:51 +0800
parents 6dba84798cd5
children
line wrap: on
line diff
--- a/libtomcrypt/src/pk/dsa/dsa_make_key.c	Tue Jan 23 23:27:40 2018 +0800
+++ b/libtomcrypt/src/pk/dsa/dsa_make_key.c	Sat Feb 17 19:29:51 2018 +0800
@@ -5,133 +5,37 @@
  *
  * The library is free for all purposes without any express
  * guarantee it works.
- *
- * Tom St Denis, [email protected], http://libtom.org
  */
 #include "tomcrypt.h"
 
 /**
    @file dsa_make_key.c
-   DSA implementation, generate a DSA key, Tom St Denis
+   DSA implementation, generate a DSA key
 */
 
 #ifdef LTC_MDSA
 
 /**
-  Create a DSA key
+  Old-style creation of a DSA key
   @param prng          An active PRNG state
   @param wprng         The index of the PRNG desired
   @param group_size    Size of the multiplicative group (octets)
   @param modulus_size  Size of the modulus (octets)
   @param key           [out] Where to store the created key
-  @return CRYPT_OK if successful, upon error this function will free all allocated memory
+  @return CRYPT_OK if successful.
 */
 int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key)
 {
-   void           *tmp, *tmp2;
-   int            err, res;
-   unsigned char *buf;
-
-   LTC_ARGCHK(key  != NULL);
-   LTC_ARGCHK(ltc_mp.name != NULL);
-
-   /* check prng */
-   if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
-      return err;
-   }
-
-   /* check size */
-   if (group_size >= LTC_MDSA_MAX_GROUP || group_size <= 15 || 
-       group_size >= modulus_size || (modulus_size - group_size) >= LTC_MDSA_DELTA) {
-      return CRYPT_INVALID_ARG;
-   }
-
-   /* allocate ram */
-   buf = XMALLOC(LTC_MDSA_DELTA);
-   if (buf == NULL) {
-      return CRYPT_MEM;
-   }
-
-   /* init mp_ints  */
-   if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != CRYPT_OK) {
-      XFREE(buf);
-      return err;
-   }
-
-   /* make our prime q */
-   if ((err = rand_prime(key->q, group_size, prng, wprng)) != CRYPT_OK)                { goto error; }
-
-   /* double q  */
-   if ((err = mp_add(key->q, key->q, tmp)) != CRYPT_OK)                                { goto error; }
-
-   /* now make a random string and multply it against q */
-   if (prng_descriptor[wprng].read(buf+1, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) {
-      err = CRYPT_ERROR_READPRNG;
-      goto error;
-   }
-
-   /* force magnitude */
-   buf[0] |= 0xC0;
-
-   /* force even */
-   buf[modulus_size - group_size - 1] &= ~1;
+  int err;
 
-   if ((err = mp_read_unsigned_bin(tmp2, buf, modulus_size - group_size)) != CRYPT_OK) { goto error; }
-   if ((err = mp_mul(key->q, tmp2, key->p)) != CRYPT_OK)                               { goto error; }
-   if ((err = mp_add_d(key->p, 1, key->p)) != CRYPT_OK)                                { goto error; }
-
-   /* now loop until p is prime */
-   for (;;) {
-       if ((err = mp_prime_is_prime(key->p, 8, &res)) != CRYPT_OK)                     { goto error; }
-       if (res == LTC_MP_YES) break;
-
-       /* add 2q to p and 2 to tmp2 */
-       if ((err = mp_add(tmp, key->p, key->p)) != CRYPT_OK)                            { goto error; }
-       if ((err = mp_add_d(tmp2, 2, tmp2)) != CRYPT_OK)                                { goto error; }
-   }
-
-   /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */
-   mp_set(key->g, 1);
-
-   do {
-      if ((err = mp_add_d(key->g, 1, key->g)) != CRYPT_OK)                             { goto error; }
-      if ((err = mp_exptmod(key->g, tmp2, key->p, tmp)) != CRYPT_OK)                   { goto error; }
-   } while (mp_cmp_d(tmp, 1) == LTC_MP_EQ);
-
-   /* at this point tmp generates a group of order q mod p */
-   mp_exch(tmp, key->g);
+  if ((err = dsa_generate_pqg(prng, wprng, group_size, modulus_size, key)) != CRYPT_OK) { return err; }
+  if ((err = dsa_generate_key(prng, wprng, key)) != CRYPT_OK) { return err; }
 
-   /* so now we have our DH structure, generator g, order q, modulus p 
-      Now we need a random exponent [mod q] and it's power g^x mod p 
-    */
-   do {
-      if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) {
-         err = CRYPT_ERROR_READPRNG;
-         goto error;
-      }
-      if ((err = mp_read_unsigned_bin(key->x, buf, group_size)) != CRYPT_OK)           { goto error; }
-   } while (mp_cmp_d(key->x, 1) != LTC_MP_GT);
-   if ((err = mp_exptmod(key->g, key->x, key->p, key->y)) != CRYPT_OK)                 { goto error; }
-  
-   key->type = PK_PRIVATE;
-   key->qord = group_size;
-
-#ifdef LTC_CLEAN_STACK
-   zeromem(buf, LTC_MDSA_DELTA);
-#endif
-
-   err = CRYPT_OK;
-   goto done;
-error: 
-    mp_clear_multi(key->g, key->q, key->p, key->x, key->y, NULL);
-done: 
-    mp_clear_multi(tmp, tmp2, NULL);
-    XFREE(buf);
-    return err;
+  return CRYPT_OK;
 }
 
 #endif
 
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref:         $Format:%D$ */
+/* git commit:  $Format:%H$ */
+/* commit time: $Format:%ai$ */