Mercurial > dropbear
diff bn_fast_s_mp_mul_high_digs.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_fast_s_mp_mul_high_digs.c Mon May 31 18:25:22 2004 +0000 @@ -0,0 +1,98 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ + #include <tommath.h> + +/* this is a modified version of fast_s_mp_mul_digs that only produces + * output digits *above* digs. See the comments for fast_s_mp_mul_digs + * to see how it works. + * + * This is used in the Barrett reduction since for one of the multiplications + * only the higher digits were needed. This essentially halves the work. + * + * Based on Algorithm 14.12 on pp.595 of HAC. + */ +int +fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ + int oldused, newused, res, pa, pb, ix; + mp_word W[MP_WARRAY]; + + /* calculate size of product and allocate more space if required */ + newused = a->used + b->used + 1; + if (c->alloc < newused) { + if ((res = mp_grow (c, newused)) != MP_OKAY) { + return res; + } + } + + /* like the other comba method we compute the columns first */ + pa = a->used; + pb = b->used; + memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word)); + for (ix = 0; ix < pa; ix++) { + { + register mp_digit tmpx, *tmpy; + register int iy; + register mp_word *_W; + + /* work todo, that is we only calculate digits that are at "digs" or above */ + iy = digs - ix; + + /* copy of word on the left of A[ix] * B[iy] */ + tmpx = a->dp[ix]; + + /* alias for right side */ + tmpy = b->dp + iy; + + /* alias for the columns of output. Offset to be equal to or above the + * smallest digit place requested + */ + _W = W + digs; + + /* skip cases below zero where ix > digs */ + if (iy < 0) { + iy = abs(iy); + tmpy += iy; + _W += iy; + iy = 0; + } + + /* compute column products for digits above the minimum */ + for (; iy < pb; iy++) { + *_W++ += ((mp_word) tmpx) * ((mp_word)*tmpy++); + } + } + } + + /* setup dest */ + oldused = c->used; + c->used = newused; + + /* now convert the array W downto what we need + * + * See comments in bn_fast_s_mp_mul_digs.c + */ + for (ix = digs + 1; ix < newused; ix++) { + W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT)); + c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK)); + } + c->dp[newused - 1] = (mp_digit) (W[newused - 1] & ((mp_word) MP_MASK)); + + for (; ix < oldused; ix++) { + c->dp[ix] = 0; + } + mp_clamp (c); + return MP_OKAY; +}