diff libtomcrypt/src/ciphers/multi2.c @ 1439:8d24733026c5 coverity

merge
author Matt Johnston <matt@ucc.asn.au>
date Sat, 24 Jun 2017 23:33:16 +0800
parents f849a5ca2efc
children 6dba84798cd5
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libtomcrypt/src/ciphers/multi2.c	Sat Jun 24 23:33:16 2017 +0800
@@ -0,0 +1,303 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://libtom.org
+ */
+
+/**
+  @file multi2.c
+  Multi-2 implementation (not public domain, hence the default disable)
+*/
+#include "tomcrypt.h"
+
+#ifdef LTC_MULTI2
+
+static void pi1(ulong32 *p)
+{
+   p[1] ^= p[0];
+}
+
+static void pi2(ulong32 *p, ulong32 *k)
+{
+   ulong32 t;
+   t = (p[1] + k[0]) & 0xFFFFFFFFUL;
+   t = (ROL(t, 1) + t - 1)  & 0xFFFFFFFFUL;
+   t = (ROL(t, 4) ^ t)  & 0xFFFFFFFFUL;
+   p[0] ^= t;
+}
+
+static void pi3(ulong32 *p, ulong32 *k)
+{
+   ulong32 t;
+   t = p[0] + k[1];
+   t = (ROL(t, 2) + t + 1)  & 0xFFFFFFFFUL;
+   t = (ROL(t, 8) ^ t)  & 0xFFFFFFFFUL;
+   t = (t + k[2])  & 0xFFFFFFFFUL;
+   t = (ROL(t, 1) - t)  & 0xFFFFFFFFUL;
+   t = ROL(t, 16) ^ (p[0] | t);
+   p[1] ^= t;
+}
+
+static void pi4(ulong32 *p, ulong32 *k)
+{
+   ulong32 t;
+   t = (p[1] + k[3])  & 0xFFFFFFFFUL;
+   t = (ROL(t, 2) + t + 1)  & 0xFFFFFFFFUL;
+   p[0] ^= t;
+}
+
+static void setup(ulong32 *dk, ulong32 *k, ulong32 *uk)
+{
+   int n, t;
+   ulong32 p[2];
+
+   p[0] = dk[0]; p[1] = dk[1];
+
+   t = 4; 
+   n = 0;
+      pi1(p);
+      pi2(p, k);
+      uk[n++] = p[0];
+      pi3(p, k);
+      uk[n++] = p[1];
+      pi4(p, k);
+      uk[n++] = p[0];
+      pi1(p);
+      uk[n++] = p[1];
+      pi2(p, k+t);
+      uk[n++] = p[0];
+      pi3(p, k+t);
+      uk[n++] = p[1];
+      pi4(p, k+t);
+      uk[n++] = p[0];
+      pi1(p);
+      uk[n++] = p[1];
+}
+
+static void encrypt(ulong32 *p, int N, ulong32 *uk)
+{
+   int n, t;
+   for (t = n = 0; ; ) {
+      pi1(p); if (++n == N) break;       
+      pi2(p, uk+t); if (++n == N) break;
+      pi3(p, uk+t); if (++n == N) break;
+      pi4(p, uk+t); if (++n == N) break;
+      t ^= 4;
+   }
+} 
+
+static void decrypt(ulong32 *p, int N, ulong32 *uk)
+{
+   int n, t;
+   for (t = 4*((N&1)^1), n = N; ;  ) {
+      switch (n >= 4 ? 4 : 0) {
+         case 4: pi4(p, uk+t); --n;
+         case 3: pi3(p, uk+t); --n;
+         case 2: pi2(p, uk+t); --n;
+         case 1: pi1(p); --n; break;
+         case 0: return;
+      }
+      t ^= 4;
+   }
+} 
+
+const struct ltc_cipher_descriptor multi2_desc = {
+   "multi2",
+   22,
+   40, 40, 8, 128,
+   &multi2_setup,
+   &multi2_ecb_encrypt,
+   &multi2_ecb_decrypt,
+   &multi2_test,
+   &multi2_done,
+   &multi2_keysize,
+   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+int  multi2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+   ulong32 sk[8], dk[2];
+   int      x;
+
+   LTC_ARGCHK(key  != NULL);
+   LTC_ARGCHK(skey != NULL);
+
+   if (keylen != 40) return CRYPT_INVALID_KEYSIZE;
+   if (num_rounds == 0) num_rounds = 128;
+   
+   skey->multi2.N = num_rounds;
+   for (x = 0; x < 8; x++) {
+       LOAD32H(sk[x], key + x*4);
+   }
+   LOAD32H(dk[0], key + 32);
+   LOAD32H(dk[1], key + 36);
+   setup(dk, sk, skey->multi2.uk);
+
+   zeromem(sk, sizeof(sk));
+   zeromem(dk, sizeof(dk));
+   return CRYPT_OK;
+}
+
+/**
+  Encrypts a block of text with multi2
+  @param pt The input plaintext (8 bytes)
+  @param ct The output ciphertext (8 bytes)
+  @param skey The key as scheduled
+  @return CRYPT_OK if successful
+*/
+int multi2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+{
+   ulong32 p[2];
+   LTC_ARGCHK(pt   != NULL);
+   LTC_ARGCHK(ct   != NULL);
+   LTC_ARGCHK(skey != NULL);
+   LOAD32H(p[0], pt);
+   LOAD32H(p[1], pt+4);
+   encrypt(p, skey->multi2.N, skey->multi2.uk);
+   STORE32H(p[0], ct);   
+   STORE32H(p[1], ct+4);
+   return CRYPT_OK;
+}
+
+/**
+  Decrypts a block of text with multi2
+  @param ct The input ciphertext (8 bytes)
+  @param pt The output plaintext (8 bytes)
+  @param skey The key as scheduled
+  @return CRYPT_OK if successful
+*/
+int multi2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+{
+   ulong32 p[2];
+   LTC_ARGCHK(pt   != NULL);
+   LTC_ARGCHK(ct   != NULL);
+   LTC_ARGCHK(skey != NULL);
+   LOAD32H(p[0], ct);
+   LOAD32H(p[1], ct+4);
+   decrypt(p, skey->multi2.N, skey->multi2.uk);
+   STORE32H(p[0], pt);   
+   STORE32H(p[1], pt+4);
+   return CRYPT_OK;
+}
+
+/**
+  Performs a self-test of the multi2 block cipher
+  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int multi2_test(void)
+{
+   static const struct {
+      unsigned char key[40];
+      unsigned char pt[8], ct[8];
+      int           rounds;
+   } tests[] = {
+{
+   {
+      0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00,
+
+      0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x00,
+   
+      0x01, 0x23, 0x45, 0x67,
+      0x89, 0xAB, 0xCD, 0xEF
+   },
+   {
+      0x00, 0x00, 0x00, 0x00,
+      0x00, 0x00, 0x00, 0x01,
+   },
+   {
+      0xf8, 0x94, 0x40, 0x84,
+      0x5e, 0x11, 0xcf, 0x89
+   },
+   128,
+},
+{
+   {
+      0x35, 0x91, 0x9d, 0x96,
+      0x07, 0x02, 0xe2, 0xce,
+      0x8d, 0x0b, 0x58, 0x3c,
+      0xc9, 0xc8, 0x9d, 0x59,
+      0xa2, 0xae, 0x96, 0x4e,
+      0x87, 0x82, 0x45, 0xed,
+      0x3f, 0x2e, 0x62, 0xd6,
+      0x36, 0x35, 0xd0, 0x67,
+
+      0xb1, 0x27, 0xb9, 0x06,
+      0xe7, 0x56, 0x22, 0x38,
+   },
+   { 
+      0x1f, 0xb4, 0x60, 0x60,
+      0xd0, 0xb3, 0x4f, 0xa5
+   },
+   {
+      0xca, 0x84, 0xa9, 0x34,
+      0x75, 0xc8, 0x60, 0xe5
+   },
+   216,
+}
+};
+   unsigned char buf[8];
+   symmetric_key skey;
+   int err, x;
+
+   for (x = 1; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
+      if ((err = multi2_setup(tests[x].key, 40, tests[x].rounds, &skey)) != CRYPT_OK) {
+         return err;
+      }
+      if ((err = multi2_ecb_encrypt(tests[x].pt, buf, &skey)) != CRYPT_OK) {
+         return err;
+      }
+
+      if (XMEMCMP(buf, tests[x].ct, 8)) {
+         return CRYPT_FAIL_TESTVECTOR;
+      }
+   
+      if ((err = multi2_ecb_decrypt(buf, buf, &skey)) != CRYPT_OK) {
+         return err;
+      }
+      if (XMEMCMP(buf, tests[x].pt, 8)) {
+         return CRYPT_FAIL_TESTVECTOR;
+      }
+   }
+   
+   return CRYPT_OK;
+}
+
+/** Terminate the context 
+   @param skey    The scheduled key
+*/
+void multi2_done(symmetric_key *skey)
+{
+}
+
+/**
+  Gets suitable key size
+  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
+  @return CRYPT_OK if the input key size is acceptable.
+*/
+int multi2_keysize(int *keysize)
+{
+   LTC_ARGCHK(keysize != NULL);
+   if (*keysize >= 40) {
+      *keysize = 40;
+   } else {
+      return CRYPT_INVALID_KEYSIZE;
+   }
+   return CRYPT_OK;
+}
+
+#endif
+
+/* $Source$ */
+/* $Revision$ */
+/* $Date$ */