Mercurial > dropbear
diff libtommath/mtest/mpi.c @ 1439:8d24733026c5 coverity
merge
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 24 Jun 2017 23:33:16 +0800 |
parents | 60fc6476e044 |
children |
line wrap: on
line diff
--- a/libtommath/mtest/mpi.c Sat Jun 03 00:10:58 2017 +0800 +++ b/libtommath/mtest/mpi.c Sat Jun 24 23:33:16 2017 +0800 @@ -6,7 +6,7 @@ Arbitrary precision integer arithmetic library - $Id: mpi.c,v 1.2 2005/05/05 14:38:47 tom Exp $ + $Id$ */ #include "mpi.h" @@ -22,7 +22,7 @@ #define DIAG(T,V) #endif -/* +/* If MP_LOGTAB is not defined, use the math library to compute the logarithms on the fly. Otherwise, use the static table below. Pick which works best for your system. @@ -33,7 +33,7 @@ /* A table of the logs of 2 for various bases (the 0 and 1 entries of - this table are meaningless and should not be referenced). + this table are meaningless and should not be referenced). This table is used to compute output lengths for the mp_toradix() function. Since a number n in radix r takes up about log_r(n) @@ -43,7 +43,7 @@ log_r(n) = log_2(n) * log_r(2) This table, therefore, is a table of log_r(2) for 2 <= r <= 36, - which are the output bases supported. + which are the output bases supported. */ #include "logtab.h" @@ -104,7 +104,7 @@ /* Value to digit maps for radix conversion */ /* s_dmap_1 - standard digits and letters */ -static const char *s_dmap_1 = +static const char *s_dmap_1 = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; #if 0 @@ -117,7 +117,7 @@ /* {{{ Static function declarations */ -/* +/* If MP_MACRO is false, these will be defined as actual functions; otherwise, suitable macro definitions will be used. This works around the fact that ANSI C89 doesn't support an 'inline' keyword @@ -258,7 +258,7 @@ return MP_OKAY; CLEANUP: - while(--pos >= 0) + while(--pos >= 0) mp_clear(&mp[pos]); return res; @@ -355,7 +355,7 @@ if(ALLOC(to) >= USED(from)) { s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); - + } else { if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) return MP_MEM; @@ -445,7 +445,7 @@ { ARGCHK(mp != NULL && count > 0, MP_BADARG); - while(--count >= 0) + while(--count >= 0) mp_clear(&mp[count]); } /* end mp_clear_array() */ @@ -455,7 +455,7 @@ /* {{{ mp_zero(mp) */ /* - mp_zero(mp) + mp_zero(mp) Set mp to zero. Does not change the allocated size of the structure, and therefore cannot fail (except on a bad argument, which we ignore) @@ -506,7 +506,7 @@ if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) return res; - res = s_mp_add_d(mp, + res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); if(res != MP_OKAY) return res; @@ -841,9 +841,9 @@ if((res = mp_copy(a, b)) != MP_OKAY) return res; - if(s_mp_cmp_d(b, 0) == MP_EQ) + if(s_mp_cmp_d(b, 0) == MP_EQ) SIGN(b) = MP_ZPOS; - else + else SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG; return MP_OKAY; @@ -870,7 +870,7 @@ if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ /* Commutativity of addition lets us do this in either order, - so we avoid having to use a temporary even if the result + so we avoid having to use a temporary even if the result is supposed to replace the output */ if(c == b) { @@ -880,14 +880,14 @@ if(c != a && (res = mp_copy(a, c)) != MP_OKAY) return res; - if((res = s_mp_add(c, b)) != MP_OKAY) + if((res = s_mp_add(c, b)) != MP_OKAY) return res; } } else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */ /* If the output is going to be clobbered, we will use a temporary - variable; otherwise, we'll do it without touching the memory + variable; otherwise, we'll do it without touching the memory allocator at all, if possible */ if(c == b) { @@ -1019,7 +1019,7 @@ mp_clear(&tmp); } else { - if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) + if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) return res; if((res = s_mp_sub(c, a)) != MP_OKAY) @@ -1066,12 +1066,12 @@ if((res = s_mp_mul(c, b)) != MP_OKAY) return res; } - + if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ) SIGN(c) = MP_ZPOS; else SIGN(c) = sgn; - + return MP_OKAY; } /* end mp_mul() */ @@ -1160,7 +1160,7 @@ return res; } - if(q) + if(q) mp_zero(q); return MP_OKAY; @@ -1206,10 +1206,10 @@ SIGN(&rtmp) = MP_ZPOS; /* Copy output, if it is needed */ - if(q) + if(q) s_mp_exch(&qtmp, q); - if(r) + if(r) s_mp_exch(&rtmp, r); CLEANUP: @@ -1264,7 +1264,7 @@ mp_int s, x; mp_err res; mp_digit d; - int dig, bit; + unsigned int bit, dig; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); @@ -1286,12 +1286,12 @@ /* Loop over bits of each non-maximal digit */ for(bit = 0; bit < DIGIT_BIT; bit++) { if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY) + if((res = s_mp_mul(&s, &x)) != MP_OKAY) goto CLEANUP; } d >>= 1; - + if((res = s_mp_sqr(&x)) != MP_OKAY) goto CLEANUP; } @@ -1311,7 +1311,7 @@ if((res = s_mp_sqr(&x)) != MP_OKAY) goto CLEANUP; } - + if(mp_iseven(b)) SIGN(&s) = SIGN(a); @@ -1362,7 +1362,7 @@ /* If |a| > m, we need to divide to get the remainder and take the - absolute value. + absolute value. If |a| < m, we don't need to do any division, just copy and adjust the sign (if a is negative). @@ -1376,7 +1376,7 @@ if((mag = s_mp_cmp(a, m)) > 0) { if((res = mp_div(a, m, NULL, c)) != MP_OKAY) return res; - + if(SIGN(c) == MP_NEG) { if((res = mp_add(c, m, c)) != MP_OKAY) return res; @@ -1391,7 +1391,7 @@ return res; } - + } else { mp_zero(c); @@ -1464,9 +1464,9 @@ return MP_RANGE; /* Special cases for zero and one, trivial */ - if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) + if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) return mp_copy(a, b); - + /* Initialize the temporaries we'll use below */ if((res = mp_init_size(&t, USED(a))) != MP_OKAY) return res; @@ -1508,7 +1508,7 @@ CLEANUP: mp_clear(&x); X: - mp_clear(&t); + mp_clear(&t); return res; @@ -1626,7 +1626,7 @@ Compute c = (a ** b) mod m. Uses a standard square-and-multiply method with modular reductions at each step. (This is basically the same code as mp_expt(), except for the addition of the reductions) - + The modular reductions are done using Barrett's algorithm (see s_mp_reduce() below for details) */ @@ -1637,7 +1637,7 @@ mp_err res; mp_digit d, *db = DIGITS(b); mp_size ub = USED(b); - int dig, bit; + unsigned int bit, dig; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); @@ -1655,7 +1655,7 @@ mp_set(&s, 1); /* mu = b^2k / m */ - s_mp_add_d(&mu, 1); + s_mp_add_d(&mu, 1); s_mp_lshd(&mu, 2 * USED(m)); if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) goto CLEANUP; @@ -1866,7 +1866,7 @@ int out; ARGCHK(a != NULL, MP_EQ); - + mp_init(&tmp); mp_set_int(&tmp, z); out = mp_cmp(a, &tmp); mp_clear(&tmp); @@ -1953,13 +1953,13 @@ if(mp_isodd(&u)) { if((res = mp_copy(&v, &t)) != MP_OKAY) goto CLEANUP; - + /* t = -v */ if(SIGN(&v) == MP_ZPOS) SIGN(&t) = MP_NEG; else SIGN(&t) = MP_ZPOS; - + } else { if((res = mp_copy(&u, &t)) != MP_OKAY) goto CLEANUP; @@ -2152,7 +2152,7 @@ if(y) if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP; - + if(g) if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP; @@ -2255,7 +2255,7 @@ /* {{{ mp_read_signed_bin(mp, str, len) */ -/* +/* mp_read_signed_bin(mp, str, len) Read in a raw value (base 256) into the given mp_int @@ -2332,16 +2332,16 @@ if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY) return res; } - + return MP_OKAY; - + } /* end mp_read_unsigned_bin() */ /* }}} */ /* {{{ mp_unsigned_bin_size(mp) */ -int mp_unsigned_bin_size(mp_int *mp) +int mp_unsigned_bin_size(mp_int *mp) { mp_digit topdig; int count; @@ -2387,7 +2387,7 @@ /* Generate digits in reverse order */ while(dp < end) { - int ix; + unsigned int ix; d = *dp; for(ix = 0; ix < sizeof(mp_digit); ++ix) { @@ -2440,7 +2440,7 @@ } return len; - + } /* end mp_count_bits() */ /* }}} */ @@ -2462,14 +2462,14 @@ mp_err res; mp_sign sig = MP_ZPOS; - ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, + ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, MP_BADARG); mp_zero(mp); /* Skip leading non-digit characters until a digit or '-' or '+' */ - while(str[ix] && - (s_mp_tovalue(str[ix], radix) < 0) && + while(str[ix] && + (s_mp_tovalue(str[ix], radix) < 0) && str[ix] != '-' && str[ix] != '+') { ++ix; @@ -2525,7 +2525,7 @@ /* num = number of digits qty = number of bits per digit radix = target base - + Return the number of digits in the specified radix that would be needed to express 'num' digits of 'qty' bits each. */ @@ -2541,7 +2541,7 @@ /* {{{ mp_toradix(mp, str, radix) */ -mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix) +mp_err mp_toradix(mp_int *mp, char *str, int radix) { int ix, pos = 0; @@ -2587,14 +2587,14 @@ /* Reverse the digits and sign indicator */ ix = 0; while(ix < pos) { - char tmp = str[ix]; + char _tmp = str[ix]; str[ix] = str[pos]; - str[pos] = tmp; + str[pos] = _tmp; ++ix; --pos; } - + mp_clear(&tmp); } @@ -2806,18 +2806,18 @@ /* {{{ s_mp_lshd(mp, p) */ -/* +/* Shift mp leftward by p digits, growing if needed, and zero-filling the in-shifted digits at the right end. This is a convenient alternative to multiplication by powers of the radix - */ + */ mp_err s_mp_lshd(mp_int *mp, mp_size p) { mp_err res; mp_size pos; mp_digit *dp; - int ix; + int ix; if(p == 0) return MP_OKAY; @@ -2829,11 +2829,11 @@ dp = DIGITS(mp); /* Shift all the significant figures over as needed */ - for(ix = pos - p; ix >= 0; ix--) + for(ix = pos - p; ix >= 0; ix--) dp[ix + p] = dp[ix]; /* Fill the bottom digits with zeroes */ - for(ix = 0; ix < p; ix++) + for(ix = 0; (unsigned)ix < p; ix++) dp[ix] = 0; return MP_OKAY; @@ -2844,7 +2844,7 @@ /* {{{ s_mp_rshd(mp, p) */ -/* +/* Shift mp rightward by p digits. Maintains the invariant that digits above the precision are all zero. Digits shifted off the end are lost. Cannot fail. @@ -2898,7 +2898,7 @@ mp_err s_mp_mul_2(mp_int *mp) { - int ix; + unsigned int ix; mp_digit kin = 0, kout, *dp = DIGITS(mp); mp_err res; @@ -2970,7 +2970,7 @@ mp_err res; mp_digit save, next, mask, *dp; mp_size used; - int ix; + unsigned int ix; if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY) return res; @@ -3054,7 +3054,7 @@ end of the division process). We multiply by the smallest power of 2 that gives us a leading digit - at least half the radix. By choosing a power of 2, we simplify the + at least half the radix. By choosing a power of 2, we simplify the multiplication and division steps to simple shifts. */ mp_digit s_mp_norm(mp_int *a, mp_int *b) @@ -3066,7 +3066,7 @@ t <<= 1; ++d; } - + if(d != 0) { s_mp_mul_2d(a, d); s_mp_mul_2d(b, d); @@ -3188,14 +3188,14 @@ test guarantees we have enough storage to do this safely. */ if(k) { - dp[max] = k; + dp[max] = k; USED(a) = max + 1; } s_mp_clamp(a); return MP_OKAY; - + } /* end s_mp_mul_d() */ /* }}} */ @@ -3289,7 +3289,7 @@ } /* If we run out of 'b' digits before we're actually done, make - sure the carries get propagated upward... + sure the carries get propagated upward... */ used = USED(a); while(w && ix < used) { @@ -3351,7 +3351,7 @@ /* Clobber any leading zeroes we created */ s_mp_clamp(a); - /* + /* If there was a borrow out, then |b| > |a| in violation of our input invariant. We've already done the work, but we'll at least complain about it... @@ -3387,7 +3387,7 @@ s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1))); #else s_mp_mul_dig(&q, m, um + 1); -#endif +#endif /* x = x - q */ if((res = mp_sub(x, &q, x)) != MP_OKAY) @@ -3441,7 +3441,7 @@ pb = DIGITS(b); for(ix = 0; ix < ub; ++ix, ++pb) { - if(*pb == 0) + if(*pb == 0) continue; /* Inner product: Digits of a */ @@ -3480,7 +3480,7 @@ for(ix = 0; ix < len; ++ix, ++b) { if(*b == 0) continue; - + pa = a; for(jx = 0; jx < len; ++jx, ++pa) { pt = out + ix + jx; @@ -3547,7 +3547,7 @@ */ for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) { mp_word u = 0, v; - + /* Store this in a temporary to avoid indirections later */ pt = pbt + ix + jx; @@ -3568,7 +3568,7 @@ v = *pt + k; /* If we do not already have an overflow carry, check to see - if the addition will cause one, and set the carry out if so + if the addition will cause one, and set the carry out if so */ u |= ((MP_WORD_MAX - v) < w); @@ -3592,7 +3592,7 @@ /* If we are carrying out, propagate the carry to the next digit in the output. This may cascade, so we have to be somewhat circumspect -- but we will have enough precision in the output - that we won't overflow + that we won't overflow */ kx = 1; while(k) { @@ -3664,7 +3664,7 @@ while(ix >= 0) { /* Find a partial substring of a which is at least b */ while(s_mp_cmp(&rem, b) < 0 && ix >= 0) { - if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) + if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) goto CLEANUP; if((res = s_mp_lshd(", 1)) != MP_OKAY) @@ -3676,8 +3676,8 @@ } /* If we didn't find one, we're finished dividing */ - if(s_mp_cmp(&rem, b) < 0) - break; + if(s_mp_cmp(&rem, b) < 0) + break; /* Compute a guess for the next quotient digit */ q = DIGIT(&rem, USED(&rem) - 1); @@ -3695,7 +3695,7 @@ if((res = s_mp_mul_d(&t, q)) != MP_OKAY) goto CLEANUP; - /* + /* If it's too big, back it off. We should not have to do this more than once, or, in rare cases, twice. Knuth describes a method by which this could be reduced to a maximum of once, but @@ -3719,7 +3719,7 @@ } /* Denormalize remainder */ - if(d != 0) + if(d != 0) s_mp_div_2d(&rem, d); s_mp_clamp("); @@ -3727,7 +3727,7 @@ /* Copy quotient back to output */ s_mp_exch(", a); - + /* Copy remainder back to output */ s_mp_exch(&rem, b); @@ -3757,7 +3757,7 @@ mp_zero(a); if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) return res; - + DIGIT(a, dig) |= (1 << bit); return MP_OKAY; @@ -3815,7 +3815,7 @@ if(ua > 1) return MP_GT; - if(*ap < d) + if(*ap < d) return MP_LT; else if(*ap > d) return MP_GT; @@ -3857,7 +3857,7 @@ } return ((uv - 1) * DIGIT_BIT) + extra; - } + } return -1; @@ -3901,7 +3901,7 @@ int s_mp_tovalue(char ch, int r) { int val, xch; - + if(r > 36) xch = ch; else @@ -3917,7 +3917,7 @@ val = 62; else if(xch == '/') val = 63; - else + else return -1; if(val < 0 || val >= r) @@ -3939,7 +3939,7 @@ The results may be odd if you use a radix < 2 or > 64, you are expected to know what you're doing. */ - + char s_mp_todigit(int val, int r, int low) { char ch; @@ -3960,7 +3960,7 @@ /* {{{ s_mp_outlen(bits, radix) */ -/* +/* Return an estimate for how long a string is needed to hold a radix r representation of a number with 'bits' significant bits. @@ -3980,6 +3980,6 @@ /* HERE THERE BE DRAGONS */ /* crc==4242132123, version==2, Sat Feb 02 06:43:52 2002 */ -/* $Source: /cvs/libtom/libtommath/mtest/mpi.c,v $ */ -/* $Revision: 1.2 $ */ -/* $Date: 2005/05/05 14:38:47 $ */ +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */