diff etc/mersenne.c @ 282:91fbc376f010 libtommath-orig libtommath-0.35

Import of libtommath 0.35 From ltm-0.35.tar.bz2 SHA1 of 3f193dbae9351e92d02530994fa18236f7fde01c
author Matt Johnston <matt@ucc.asn.au>
date Wed, 08 Mar 2006 13:16:18 +0000
parents
children 97db060d0ef5
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/etc/mersenne.c	Wed Mar 08 13:16:18 2006 +0000
@@ -0,0 +1,140 @@
+/* Finds Mersenne primes using the Lucas-Lehmer test 
+ *
+ * Tom St Denis, [email protected]
+ */
+#include <time.h>
+#include <tommath.h>
+
+int
+is_mersenne (long s, int *pp)
+{
+  mp_int  n, u;
+  int     res, k;
+  
+  *pp = 0;
+
+  if ((res = mp_init (&n)) != MP_OKAY) {
+    return res;
+  }
+
+  if ((res = mp_init (&u)) != MP_OKAY) {
+    goto LBL_N;
+  }
+
+  /* n = 2^s - 1 */
+  if ((res = mp_2expt(&n, s)) != MP_OKAY) {
+     goto LBL_MU;
+  }
+  if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
+    goto LBL_MU;
+  }
+
+  /* set u=4 */
+  mp_set (&u, 4);
+
+  /* for k=1 to s-2 do */
+  for (k = 1; k <= s - 2; k++) {
+    /* u = u^2 - 2 mod n */
+    if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
+      goto LBL_MU;
+    }
+    if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
+      goto LBL_MU;
+    }
+
+    /* make sure u is positive */
+    while (u.sign == MP_NEG) {
+      if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
+         goto LBL_MU;
+      }
+    }
+
+    /* reduce */
+    if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
+      goto LBL_MU;
+    }
+  }
+
+  /* if u == 0 then its prime */
+  if (mp_iszero (&u) == 1) {
+    mp_prime_is_prime(&n, 8, pp);
+  if (*pp != 1) printf("FAILURE\n");
+  }
+
+  res = MP_OKAY;
+LBL_MU:mp_clear (&u);
+LBL_N:mp_clear (&n);
+  return res;
+}
+
+/* square root of a long < 65536 */
+long
+i_sqrt (long x)
+{
+  long    x1, x2;
+
+  x2 = 16;
+  do {
+    x1 = x2;
+    x2 = x1 - ((x1 * x1) - x) / (2 * x1);
+  } while (x1 != x2);
+
+  if (x1 * x1 > x) {
+    --x1;
+  }
+
+  return x1;
+}
+
+/* is the long prime by brute force */
+int
+isprime (long k)
+{
+  long    y, z;
+
+  y = i_sqrt (k);
+  for (z = 2; z <= y; z++) {
+    if ((k % z) == 0)
+      return 0;
+  }
+  return 1;
+}
+
+
+int
+main (void)
+{
+  int     pp;
+  long    k;
+  clock_t tt;
+
+  k = 3;
+
+  for (;;) {
+    /* start time */
+    tt = clock ();
+
+    /* test if 2^k - 1 is prime */
+    if (is_mersenne (k, &pp) != MP_OKAY) {
+      printf ("Whoa error\n");
+      return -1;
+    }
+
+    if (pp == 1) {
+      /* count time */
+      tt = clock () - tt;
+
+      /* display if prime */
+      printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
+    }
+
+    /* goto next odd exponent */
+    k += 2;
+
+    /* but make sure its prime */
+    while (isprime (k) == 0) {
+      k += 2;
+    }
+  }
+  return 0;
+}