diff src/ciphers/rc2.c @ 192:9cc34777b479 libtomcrypt

propagate from branch 'au.asn.ucc.matt.ltc-orig' (head 9ba8f01f44320e9cb9f19881105ae84f84a43ea9) to branch 'au.asn.ucc.matt.dropbear.ltc' (head dbf51c569bc34956ad948e4cc87a0eeb2170b768)
author Matt Johnston <matt@ucc.asn.au>
date Sun, 08 May 2005 06:36:47 +0000
parents 1c15b283127b
children 39d5d58461d6
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ciphers/rc2.c	Sun May 08 06:36:47 2005 +0000
@@ -0,0 +1,350 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://libtomcrypt.org
+ */
+/**********************************************************************\
+* To commemorate the 1996 RSA Data Security Conference, the following  *
+* code is released into the public domain by its author.  Prost!       *
+*                                                                      *
+* This cipher uses 16-bit words and little-endian byte ordering.       *
+* I wonder which processor it was optimized for?                       *
+*                                                                      *
+* Thanks to CodeView, SoftIce, and D86 for helping bring this code to  *
+* the public.                                                          *
+\**********************************************************************/
+#include <tomcrypt.h>
+
+/**
+  @file rc2.c
+  Implementation of RC2
+*/  
+
+#ifdef RC2
+
+const struct ltc_cipher_descriptor rc2_desc = {
+   "rc2",
+   12, 8, 128, 8, 16,
+   &rc2_setup,
+   &rc2_ecb_encrypt,
+   &rc2_ecb_decrypt,
+   &rc2_test,
+   &rc2_done,
+   &rc2_keysize,
+   NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+/* 256-entry permutation table, probably derived somehow from pi */
+static const unsigned char permute[256] = {
+        217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
+        198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
+         23,154, 89,245,135,179, 79, 19, 97, 69,109,141,  9,129,125, 50,
+        189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
+         84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
+         18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
+        111,191, 14,218, 70,105,  7, 87, 39,242, 29,155,188,148, 67,  3,
+        248, 17,199,246,144,239, 62,231,  6,195,213, 47,200,102, 30,215,
+          8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
+        150, 26,210,113, 90, 21, 73,116, 75,159,208, 94,  4, 24,164,236,
+        194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
+        153,124, 58,133, 35,184,180,122,252,  2, 54, 91, 37, 85,151, 49,
+         45, 93,250,152,227,138,146,174,  5,223, 41, 16,103,108,186,201,
+        211,  0,230,207,225,158,168, 44, 99, 22,  1, 63, 88,226,137,169,
+         13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
+        197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
+};
+
+ /**
+    Initialize the RC2 block cipher
+    @param key The symmetric key you wish to pass
+    @param keylen The key length in bytes
+    @param num_rounds The number of rounds desired (0 for default)
+    @param skey The key in as scheduled by this function.
+    @return CRYPT_OK if successful
+ */
+int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+   unsigned *xkey = skey->rc2.xkey;
+   unsigned char tmp[128];
+   unsigned T8, TM;
+   int i, bits;
+
+   LTC_ARGCHK(key  != NULL);
+   LTC_ARGCHK(skey != NULL);
+
+   if (keylen < 8 || keylen > 128) {
+      return CRYPT_INVALID_KEYSIZE;
+   }
+
+   if (num_rounds != 0 && num_rounds != 16) {
+      return CRYPT_INVALID_ROUNDS;
+   }
+
+   for (i = 0; i < keylen; i++) {
+       tmp[i] = key[i] & 255;
+   }
+
+    /* Phase 1: Expand input key to 128 bytes */
+    if (keylen < 128) {
+        for (i = keylen; i < 128; i++) {
+            tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
+        }
+    }
+    
+    /* Phase 2 - reduce effective key size to "bits" */
+    bits = keylen<<3;
+    T8   = (unsigned)(bits+7)>>3;
+    TM   = (255 >> (unsigned)(7 & -bits));
+    tmp[128 - T8] = permute[tmp[128 - T8] & TM];
+    for (i = 127 - T8; i >= 0; i--) {
+        tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
+    }
+
+    /* Phase 3 - copy to xkey in little-endian order */
+    for (i = 0; i < 64; i++) {
+        xkey[i] =  (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
+    }        
+
+#ifdef LTC_CLEAN_STACK
+    zeromem(tmp, sizeof(tmp));
+#endif
+    
+    return CRYPT_OK;
+}
+
+/**********************************************************************\
+* Encrypt an 8-byte block of plaintext using the given key.            *
+\**********************************************************************/
+/**
+  Encrypts a block of text with RC2
+  @param pt The input plaintext (8 bytes)
+  @param ct The output ciphertext (8 bytes)
+  @param skey The key as scheduled
+*/
+#ifdef LTC_CLEAN_STACK
+static void _rc2_ecb_encrypt( const unsigned char *pt,
+                            unsigned char *ct,
+                            symmetric_key *skey)
+#else
+void rc2_ecb_encrypt( const unsigned char *pt,
+                            unsigned char *ct,
+                            symmetric_key *skey)
+#endif
+{
+    unsigned *xkey;
+    unsigned x76, x54, x32, x10, i;
+
+    LTC_ARGCHK(pt  != NULL);
+    LTC_ARGCHK(ct != NULL);
+    LTC_ARGCHK(skey   != NULL);
+
+    xkey = skey->rc2.xkey;
+
+    x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6];
+    x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4];
+    x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2];
+    x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0];
+
+    for (i = 0; i < 16; i++) {
+        x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
+        x10 = ((x10 << 1) | (x10 >> 15));
+
+        x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
+        x32 = ((x32 << 2) | (x32 >> 14));
+
+        x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
+        x54 = ((x54 << 3) | (x54 >> 13));
+
+        x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
+        x76 = ((x76 << 5) | (x76 >> 11));
+
+        if (i == 4 || i == 10) {
+            x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
+            x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
+            x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
+            x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
+        }
+    }
+
+    ct[0] = (unsigned char)x10;
+    ct[1] = (unsigned char)(x10 >> 8);
+    ct[2] = (unsigned char)x32;
+    ct[3] = (unsigned char)(x32 >> 8);
+    ct[4] = (unsigned char)x54;
+    ct[5] = (unsigned char)(x54 >> 8);
+    ct[6] = (unsigned char)x76;
+    ct[7] = (unsigned char)(x76 >> 8);
+}
+
+#ifdef LTC_CLEAN_STACK
+void rc2_ecb_encrypt( const unsigned char *pt,
+                            unsigned char *ct,
+                            symmetric_key *skey)
+{
+    _rc2_ecb_encrypt(pt, ct, skey);
+    burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
+}
+#endif
+
+/**********************************************************************\
+* Decrypt an 8-byte block of ciphertext using the given key.           *
+\**********************************************************************/
+/**
+  Decrypts a block of text with RC2
+  @param ct The input ciphertext (8 bytes)
+  @param pt The output plaintext (8 bytes)
+  @param skey The key as scheduled 
+*/
+#ifdef LTC_CLEAN_STACK
+static void _rc2_ecb_decrypt( const unsigned char *ct,
+                            unsigned char *pt,
+                            symmetric_key *skey)
+#else
+void rc2_ecb_decrypt( const unsigned char *ct,
+                            unsigned char *pt,
+                            symmetric_key *skey)
+#endif
+{
+    unsigned x76, x54, x32, x10;
+    unsigned *xkey;
+    int i;
+
+    LTC_ARGCHK(pt  != NULL);
+    LTC_ARGCHK(ct != NULL);
+    LTC_ARGCHK(skey   != NULL);
+
+    xkey = skey->rc2.xkey;
+
+    x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6];
+    x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4];
+    x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2];
+    x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0];
+
+    for (i = 15; i >= 0; i--) {
+        if (i == 4 || i == 10) {
+            x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
+            x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
+            x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
+            x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
+        }
+
+        x76 = ((x76 << 11) | (x76 >> 5));
+        x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;
+
+        x54 = ((x54 << 13) | (x54 >> 3));
+        x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;
+
+        x32 = ((x32 << 14) | (x32 >> 2));
+        x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;
+
+        x10 = ((x10 << 15) | (x10 >> 1));
+        x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
+    }
+
+    pt[0] = (unsigned char)x10;
+    pt[1] = (unsigned char)(x10 >> 8);
+    pt[2] = (unsigned char)x32;
+    pt[3] = (unsigned char)(x32 >> 8);
+    pt[4] = (unsigned char)x54;
+    pt[5] = (unsigned char)(x54 >> 8);
+    pt[6] = (unsigned char)x76;
+    pt[7] = (unsigned char)(x76 >> 8);
+}
+
+#ifdef LTC_CLEAN_STACK
+void rc2_ecb_decrypt( const unsigned char *ct,
+                            unsigned char *pt,
+                            symmetric_key *skey)
+{
+    _rc2_ecb_decrypt(ct, pt, skey);
+    burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
+}
+#endif
+
+/**
+  Performs a self-test of the RC2 block cipher
+  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int rc2_test(void)
+{
+ #ifndef LTC_TEST
+    return CRYPT_NOP;
+ #else    
+   static const struct {
+        int keylen;
+        unsigned char key[16], pt[8], ct[8];
+   } tests[] = {
+
+   { 8,
+     { 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+     { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
+     { 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
+
+   },
+   { 16,
+     { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
+       0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
+     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+     { 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
+   }
+  };
+    int x, y, err;
+    symmetric_key skey;
+    unsigned char tmp[2][8];
+
+    for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
+        zeromem(tmp, sizeof(tmp));
+        if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
+           return err;
+        }
+        
+        rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
+        rc2_ecb_decrypt(tmp[0], tmp[1], &skey);
+        
+        if (memcmp(tmp[0], tests[x].ct, 8) != 0 || memcmp(tmp[1], tests[x].pt, 8) != 0) {
+           return CRYPT_FAIL_TESTVECTOR;
+        }
+
+      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+      for (y = 0; y < 8; y++) tmp[0][y] = 0;
+      for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
+      for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
+      for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+    }
+    return CRYPT_OK;
+   #endif
+}
+
+/** Terminate the context 
+   @param skey    The scheduled key
+*/
+void rc2_done(symmetric_key *skey)
+{
+}
+
+/**
+  Gets suitable key size
+  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
+  @return CRYPT_OK if the input key size is acceptable.
+*/
+int rc2_keysize(int *keysize)
+{
+   LTC_ARGCHK(keysize != NULL);
+   if (*keysize < 8) {
+       return CRYPT_INVALID_KEYSIZE;
+   } else if (*keysize > 128) {
+       *keysize = 128;
+   }
+   return CRYPT_OK;
+}
+
+#endif
+
+
+