diff src/pk/dsa/dsa_verify_key.c @ 192:9cc34777b479 libtomcrypt

propagate from branch 'au.asn.ucc.matt.ltc-orig' (head 9ba8f01f44320e9cb9f19881105ae84f84a43ea9) to branch 'au.asn.ucc.matt.dropbear.ltc' (head dbf51c569bc34956ad948e4cc87a0eeb2170b768)
author Matt Johnston <matt@ucc.asn.au>
date Sun, 08 May 2005 06:36:47 +0000
parents 1c15b283127b
children 39d5d58461d6
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/pk/dsa/dsa_verify_key.c	Sun May 08 06:36:47 2005 +0000
@@ -0,0 +1,98 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://libtomcrypt.org
+ */
+#include "tomcrypt.h"
+
+/**
+   @file dsa_verify_key.c
+   DSA implementation, verify a key, Tom St Denis
+*/
+
+#ifdef MDSA
+
+/**
+   Verify a DSA key for validity
+   @param key   The key to verify
+   @param stat  [out]  Result of test, 1==valid, 0==invalid
+   @return CRYPT_OK if successful
+*/
+int dsa_verify_key(dsa_key *key, int *stat)
+{
+   mp_int tmp, tmp2;
+   int    res, err;
+
+   LTC_ARGCHK(key  != NULL);
+   LTC_ARGCHK(stat != NULL);
+
+   /* default to an invalid key */
+   *stat = 0;
+
+   /* first make sure key->q and key->p are prime */
+   if ((err = is_prime(&key->q, &res)) != CRYPT_OK) {
+      return err;
+   }
+   if (res == 0) {
+      return CRYPT_OK;
+   }
+
+
+   if ((err = is_prime(&key->p, &res)) != CRYPT_OK) {
+      return err;
+   }
+   if (res == 0) {
+      return CRYPT_OK;
+   }
+
+   /* now make sure that g is not -1, 0 or 1 and <p */
+   if (mp_cmp_d(&key->g, 0) == MP_EQ || mp_cmp_d(&key->g, 1) == MP_EQ) {
+      return CRYPT_OK;
+   }
+   if ((err = mp_init_multi(&tmp, &tmp2, NULL)) != MP_OKAY)               { goto error; }
+   if ((err = mp_sub_d(&key->p, 1, &tmp)) != MP_OKAY)                     { goto error; }
+   if (mp_cmp(&tmp, &key->g) == MP_EQ || mp_cmp(&key->g, &key->p) != MP_LT) {
+      err = CRYPT_OK;
+      goto done;
+   }
+
+   /* 1 < y < p-1 */
+   if (!(mp_cmp_d(&key->y, 1) == MP_GT && mp_cmp(&key->y, &tmp) == MP_LT)) {
+      err = CRYPT_OK;
+      goto done;
+   }
+
+   /* now we have to make sure that g^q = 1, and that p-1/q gives 0 remainder */
+   if ((err = mp_div(&tmp, &key->q, &tmp, &tmp2)) != MP_OKAY)             { goto error; }
+   if (mp_iszero(&tmp2) != MP_YES) {
+      err = CRYPT_OK;
+      goto done;
+   }
+
+   if ((err = mp_exptmod(&key->g, &key->q, &key->p, &tmp)) != MP_OKAY)    { goto error; }
+   if (mp_cmp_d(&tmp, 1) != MP_EQ) {
+      err = CRYPT_OK;
+      goto done;
+   }
+
+   /* now we have to make sure that y^q = 1, this makes sure y \in g^x mod p */
+   if ((err = mp_exptmod(&key->y, &key->q, &key->p, &tmp)) != MP_OKAY)       { goto error; }
+   if (mp_cmp_d(&tmp, 1) != MP_EQ) {
+      err = CRYPT_OK;
+      goto done;
+   }
+
+   /* at this point we are out of tests ;-( */
+   err   = CRYPT_OK;
+   *stat = 1;
+   goto done;
+error: err = mpi_to_ltc_error(err);
+done : mp_clear_multi(&tmp, &tmp2, NULL);
+   return err;
+}
+#endif