Mercurial > dropbear
diff tomsfastmath/src/divide/fp_div.c @ 643:a362b62d38b2 dropbear-tfm
Add tomsfastmath from git rev bfa4582842bc3bab42e4be4aed5703437049502a
with Makefile.in renamed
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 23 Nov 2011 18:10:20 +0700 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tomsfastmath/src/divide/fp_div.c Wed Nov 23 18:10:20 2011 +0700 @@ -0,0 +1,157 @@ +/* TomsFastMath, a fast ISO C bignum library. + * + * This project is meant to fill in where LibTomMath + * falls short. That is speed ;-) + * + * This project is public domain and free for all purposes. + * + * Tom St Denis, [email protected] + */ +#include <tfm.h> + +/* a/b => cb + d == a */ +int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d) +{ + fp_int q, x, y, t1, t2; + int n, t, i, norm, neg; + + /* is divisor zero ? */ + if (fp_iszero (b) == 1) { + return FP_VAL; + } + + /* if a < b then q=0, r = a */ + if (fp_cmp_mag (a, b) == FP_LT) { + if (d != NULL) { + fp_copy (a, d); + } + if (c != NULL) { + fp_zero (c); + } + return FP_OKAY; + } + + fp_init(&q); + q.used = a->used + 2; + + fp_init(&t1); + fp_init(&t2); + fp_init_copy(&x, a); + fp_init_copy(&y, b); + + /* fix the sign */ + neg = (a->sign == b->sign) ? FP_ZPOS : FP_NEG; + x.sign = y.sign = FP_ZPOS; + + /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ + norm = fp_count_bits(&y) % DIGIT_BIT; + if (norm < (int)(DIGIT_BIT-1)) { + norm = (DIGIT_BIT-1) - norm; + fp_mul_2d (&x, norm, &x); + fp_mul_2d (&y, norm, &y); + } else { + norm = 0; + } + + /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ + n = x.used - 1; + t = y.used - 1; + + /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ + fp_lshd (&y, n - t); /* y = y*b**{n-t} */ + + while (fp_cmp (&x, &y) != FP_LT) { + ++(q.dp[n - t]); + fp_sub (&x, &y, &x); + } + + /* reset y by shifting it back down */ + fp_rshd (&y, n - t); + + /* step 3. for i from n down to (t + 1) */ + for (i = n; i >= (t + 1); i--) { + if (i > x.used) { + continue; + } + + /* step 3.1 if xi == yt then set q{i-t-1} to b-1, + * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ + if (x.dp[i] == y.dp[t]) { + q.dp[i - t - 1] = ((((fp_word)1) << DIGIT_BIT) - 1); + } else { + fp_word tmp; + tmp = ((fp_word) x.dp[i]) << ((fp_word) DIGIT_BIT); + tmp |= ((fp_word) x.dp[i - 1]); + tmp /= ((fp_word) y.dp[t]); + q.dp[i - t - 1] = (fp_digit) (tmp); + } + + /* while (q{i-t-1} * (yt * b + y{t-1})) > + xi * b**2 + xi-1 * b + xi-2 + + do q{i-t-1} -= 1; + */ + q.dp[i - t - 1] = (q.dp[i - t - 1] + 1); + do { + q.dp[i - t - 1] = (q.dp[i - t - 1] - 1); + + /* find left hand */ + fp_zero (&t1); + t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; + t1.dp[1] = y.dp[t]; + t1.used = 2; + fp_mul_d (&t1, q.dp[i - t - 1], &t1); + + /* find right hand */ + t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; + t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; + t2.dp[2] = x.dp[i]; + t2.used = 3; + } while (fp_cmp_mag(&t1, &t2) == FP_GT); + + /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ + fp_mul_d (&y, q.dp[i - t - 1], &t1); + fp_lshd (&t1, i - t - 1); + fp_sub (&x, &t1, &x); + + /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ + if (x.sign == FP_NEG) { + fp_copy (&y, &t1); + fp_lshd (&t1, i - t - 1); + fp_add (&x, &t1, &x); + q.dp[i - t - 1] = q.dp[i - t - 1] - 1; + } + } + + /* now q is the quotient and x is the remainder + * [which we have to normalize] + */ + + /* get sign before writing to c */ + x.sign = x.used == 0 ? FP_ZPOS : a->sign; + + if (c != NULL) { + fp_clamp (&q); + fp_copy (&q, c); + c->sign = neg; + } + + if (d != NULL) { + fp_div_2d (&x, norm, &x, NULL); + +/* the following is a kludge, essentially we were seeing the right remainder but + with excess digits that should have been zero + */ + for (i = b->used; i < x.used; i++) { + x.dp[i] = 0; + } + fp_clamp(&x); + fp_copy (&x, d); + } + + return FP_OKAY; +} + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */