Mercurial > dropbear
diff tomsfastmath/src/exptmod/fp_exptmod.c @ 643:a362b62d38b2 dropbear-tfm
Add tomsfastmath from git rev bfa4582842bc3bab42e4be4aed5703437049502a
with Makefile.in renamed
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 23 Nov 2011 18:10:20 +0700 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tomsfastmath/src/exptmod/fp_exptmod.c Wed Nov 23 18:10:20 2011 +0700 @@ -0,0 +1,276 @@ +/* TomsFastMath, a fast ISO C bignum library. + * + * This project is meant to fill in where LibTomMath + * falls short. That is speed ;-) + * + * This project is public domain and free for all purposes. + * + * Tom St Denis, [email protected] + */ +#include <tfm.h> + +#ifdef TFM_TIMING_RESISTANT + +/* timing resistant montgomery ladder based exptmod + + Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder", Cryptographic Hardware and Embedded Systems, CHES 2002 +*/ +static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y) +{ + fp_int R[2]; + fp_digit buf, mp; + int err, bitcnt, digidx, y; + + /* now setup montgomery */ + if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) { + return err; + } + + fp_init(&R[0]); + fp_init(&R[1]); + + /* now we need R mod m */ + fp_montgomery_calc_normalization (&R[0], P); + + /* now set R[0][1] to G * R mod m */ + if (fp_cmp_mag(P, G) != FP_GT) { + /* G > P so we reduce it first */ + fp_mod(G, P, &R[1]); + } else { + fp_copy(G, &R[1]); + } + fp_mulmod (&R[1], &R[0], P, &R[1]); + + /* for j = t-1 downto 0 do + r_!k = R0*R1; r_k = r_k^2 + */ + + /* set initial mode and bit cnt */ + bitcnt = 1; + buf = 0; + digidx = X->used - 1; + + for (;;) { + /* grab next digit as required */ + if (--bitcnt == 0) { + /* if digidx == -1 we are out of digits so break */ + if (digidx == -1) { + break; + } + /* read next digit and reset bitcnt */ + buf = X->dp[digidx--]; + bitcnt = (int)DIGIT_BIT; + } + + /* grab the next msb from the exponent */ + y = (fp_digit)(buf >> (DIGIT_BIT - 1)) & 1; + buf <<= (fp_digit)1; + + /* do ops */ + fp_mul(&R[0], &R[1], &R[y^1]); fp_montgomery_reduce(&R[y^1], P, mp); + fp_sqr(&R[y], &R[y]); fp_montgomery_reduce(&R[y], P, mp); + } + + fp_montgomery_reduce(&R[0], P, mp); + fp_copy(&R[0], Y); + return FP_OKAY; +} + +#else + +/* y = g**x (mod b) + * Some restrictions... x must be positive and < b + */ +static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y) +{ + fp_int M[64], res; + fp_digit buf, mp; + int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; + + /* find window size */ + x = fp_count_bits (X); + if (x <= 21) { + winsize = 1; + } else if (x <= 36) { + winsize = 3; + } else if (x <= 140) { + winsize = 4; + } else if (x <= 450) { + winsize = 5; + } else { + winsize = 6; + } + + /* init M array */ + memset(M, 0, sizeof(M)); + + /* now setup montgomery */ + if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) { + return err; + } + + /* setup result */ + fp_init(&res); + + /* create M table + * + * The M table contains powers of the input base, e.g. M[x] = G^x mod P + * + * The first half of the table is not computed though accept for M[0] and M[1] + */ + + /* now we need R mod m */ + fp_montgomery_calc_normalization (&res, P); + + /* now set M[1] to G * R mod m */ + if (fp_cmp_mag(P, G) != FP_GT) { + /* G > P so we reduce it first */ + fp_mod(G, P, &M[1]); + } else { + fp_copy(G, &M[1]); + } + fp_mulmod (&M[1], &res, P, &M[1]); + + /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ + fp_copy (&M[1], &M[1 << (winsize - 1)]); + for (x = 0; x < (winsize - 1); x++) { + fp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)]); + fp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp); + } + + /* create upper table */ + for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { + fp_mul(&M[x - 1], &M[1], &M[x]); + fp_montgomery_reduce(&M[x], P, mp); + } + + /* set initial mode and bit cnt */ + mode = 0; + bitcnt = 1; + buf = 0; + digidx = X->used - 1; + bitcpy = 0; + bitbuf = 0; + + for (;;) { + /* grab next digit as required */ + if (--bitcnt == 0) { + /* if digidx == -1 we are out of digits so break */ + if (digidx == -1) { + break; + } + /* read next digit and reset bitcnt */ + buf = X->dp[digidx--]; + bitcnt = (int)DIGIT_BIT; + } + + /* grab the next msb from the exponent */ + y = (fp_digit)(buf >> (DIGIT_BIT - 1)) & 1; + buf <<= (fp_digit)1; + + /* if the bit is zero and mode == 0 then we ignore it + * These represent the leading zero bits before the first 1 bit + * in the exponent. Technically this opt is not required but it + * does lower the # of trivial squaring/reductions used + */ + if (mode == 0 && y == 0) { + continue; + } + + /* if the bit is zero and mode == 1 then we square */ + if (mode == 1 && y == 0) { + fp_sqr(&res, &res); + fp_montgomery_reduce(&res, P, mp); + continue; + } + + /* else we add it to the window */ + bitbuf |= (y << (winsize - ++bitcpy)); + mode = 2; + + if (bitcpy == winsize) { + /* ok window is filled so square as required and multiply */ + /* square first */ + for (x = 0; x < winsize; x++) { + fp_sqr(&res, &res); + fp_montgomery_reduce(&res, P, mp); + } + + /* then multiply */ + fp_mul(&res, &M[bitbuf], &res); + fp_montgomery_reduce(&res, P, mp); + + /* empty window and reset */ + bitcpy = 0; + bitbuf = 0; + mode = 1; + } + } + + /* if bits remain then square/multiply */ + if (mode == 2 && bitcpy > 0) { + /* square then multiply if the bit is set */ + for (x = 0; x < bitcpy; x++) { + fp_sqr(&res, &res); + fp_montgomery_reduce(&res, P, mp); + + /* get next bit of the window */ + bitbuf <<= 1; + if ((bitbuf & (1 << winsize)) != 0) { + /* then multiply */ + fp_mul(&res, &M[1], &res); + fp_montgomery_reduce(&res, P, mp); + } + } + } + + /* fixup result if Montgomery reduction is used + * recall that any value in a Montgomery system is + * actually multiplied by R mod n. So we have + * to reduce one more time to cancel out the factor + * of R. + */ + fp_montgomery_reduce(&res, P, mp); + + /* swap res with Y */ + fp_copy (&res, Y); + return FP_OKAY; +} + +#endif + + +int fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y) +{ + fp_int tmp; + int err; + +#ifdef TFM_CHECK + /* prevent overflows */ + if (P->used > (FP_SIZE/2)) { + return FP_VAL; + } +#endif + + /* is X negative? */ + if (X->sign == FP_NEG) { + /* yes, copy G and invmod it */ + fp_copy(G, &tmp); + if ((err = fp_invmod(&tmp, P, &tmp)) != FP_OKAY) { + return err; + } + X->sign = FP_ZPOS; + err = _fp_exptmod(&tmp, X, P, Y); + if (X != Y) { + X->sign = FP_NEG; + } + return err; + } else { + /* Positive exponent so just exptmod */ + return _fp_exptmod(G, X, P, Y); + } +} + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */