Mercurial > dropbear
diff libtommath/bn_mp_exptmod.c @ 1733:d529a52b2f7c coverity coverity
merge coverity from main
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Fri, 26 Jun 2020 21:07:34 +0800 |
parents | 1051e4eea25a |
children |
line wrap: on
line diff
--- a/libtommath/bn_mp_exptmod.c Thu Mar 21 23:28:59 2019 +0800 +++ b/libtommath/bn_mp_exptmod.c Fri Jun 26 21:07:34 2020 +0800 @@ -1,112 +1,76 @@ -#include <tommath_private.h> +#include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * The library is free for all purposes without any express - * guarantee it works. - * - * Tom St Denis, [email protected], http://libtom.org - */ - +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ -int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) +mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) { - int dr; + int dr; - /* modulus P must be positive */ - if (P->sign == MP_NEG) { - return MP_VAL; - } + /* modulus P must be positive */ + if (P->sign == MP_NEG) { + return MP_VAL; + } - /* if exponent X is negative we have to recurse */ - if (X->sign == MP_NEG) { -#ifdef BN_MP_INVMOD_C - mp_int tmpG, tmpX; - int err; + /* if exponent X is negative we have to recurse */ + if (X->sign == MP_NEG) { + mp_int tmpG, tmpX; + mp_err err; - /* first compute 1/G mod P */ - if ((err = mp_init(&tmpG)) != MP_OKAY) { - return err; - } - if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { - mp_clear(&tmpG); - return err; - } + if (!MP_HAS(MP_INVMOD)) { + return MP_VAL; + } + + if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) { + return err; + } - /* now get |X| */ - if ((err = mp_init(&tmpX)) != MP_OKAY) { - mp_clear(&tmpG); - return err; - } - if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { - mp_clear_multi(&tmpG, &tmpX, NULL); - return err; - } + /* first compute 1/G mod P */ + if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { + goto LBL_ERR; + } + + /* now get |X| */ + if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { + goto LBL_ERR; + } - /* and now compute (1/G)**|X| instead of G**X [X < 0] */ - err = mp_exptmod(&tmpG, &tmpX, P, Y); - mp_clear_multi(&tmpG, &tmpX, NULL); - return err; -#else - /* no invmod */ - return MP_VAL; -#endif - } + /* and now compute (1/G)**|X| instead of G**X [X < 0] */ + err = mp_exptmod(&tmpG, &tmpX, P, Y); +LBL_ERR: + mp_clear_multi(&tmpG, &tmpX, NULL); + return err; + } -/* modified diminished radix reduction */ -#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) - if (mp_reduce_is_2k_l(P) == MP_YES) { - return s_mp_exptmod(G, X, P, Y, 1); - } -#endif + /* modified diminished radix reduction */ + if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) && + (mp_reduce_is_2k_l(P) == MP_YES)) { + return s_mp_exptmod(G, X, P, Y, 1); + } + + /* is it a DR modulus? default to no */ + dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0; -#ifdef BN_MP_DR_IS_MODULUS_C - /* is it a DR modulus? */ - dr = mp_dr_is_modulus(P); -#else - /* default to no */ - dr = 0; -#endif + /* if not, is it a unrestricted DR modulus? */ + if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) { + dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0; + } -#ifdef BN_MP_REDUCE_IS_2K_C - /* if not, is it a unrestricted DR modulus? */ - if (dr == 0) { - dr = mp_reduce_is_2k(P) << 1; - } -#endif - - /* if the modulus is odd or dr != 0 use the montgomery method */ -#ifdef BN_MP_EXPTMOD_FAST_C - if ((mp_isodd (P) == MP_YES) || (dr != 0)) { - return mp_exptmod_fast (G, X, P, Y, dr); - } else { -#endif -#ifdef BN_S_MP_EXPTMOD_C - /* otherwise use the generic Barrett reduction technique */ - return s_mp_exptmod (G, X, P, Y, 0); -#else - /* no exptmod for evens */ - return MP_VAL; -#endif -#ifdef BN_MP_EXPTMOD_FAST_C - } -#endif + /* if the modulus is odd or dr != 0 use the montgomery method */ + if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) { + return s_mp_exptmod_fast(G, X, P, Y, dr); + } else if (MP_HAS(S_MP_EXPTMOD)) { + /* otherwise use the generic Barrett reduction technique */ + return s_mp_exptmod(G, X, P, Y, 0); + } else { + /* no exptmod for evens */ + return MP_VAL; + } } #endif - -/* ref: $Format:%D$ */ -/* git commit: $Format:%H$ */ -/* commit time: $Format:%ai$ */