Mercurial > dropbear
diff src/ciphers/kasumi.c @ 380:d5faf4814ddb libtomcrypt-orig libtomcrypt-1.16
Update to LibTomCrypt 1.16
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Thu, 11 Jan 2007 02:22:00 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ciphers/kasumi.c Thu Jan 11 02:22:00 2007 +0000 @@ -0,0 +1,318 @@ +/* LibTomCrypt, modular cryptographic library -- Tom St Denis + * + * LibTomCrypt is a library that provides various cryptographic + * algorithms in a highly modular and flexible manner. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://libtomcrypt.com + */ + +/** + @file kasumi.c + Implementation of the 3GPP Kasumi block cipher + Derived from the 3GPP standard source code +*/ + +#include "tomcrypt.h" + +#ifdef LTC_KASUMI + +typedef unsigned u16; + +#define ROL16(x, y) ((((x)<<(y)) | ((x)>>(16-(y)))) & 0xFFFF) + +const struct ltc_cipher_descriptor kasumi_desc = { + "kasumi", + 21, + 16, 16, 8, 8, + &kasumi_setup, + &kasumi_ecb_encrypt, + &kasumi_ecb_decrypt, + &kasumi_test, + &kasumi_done, + &kasumi_keysize, + NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL +}; + +static u16 FI( u16 in, u16 subkey ) +{ + u16 nine, seven; + static const u16 S7[128] = { + 54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33, + 55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81, + 53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43, + 20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98, + 117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87, + 112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66, + 102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44, + 64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3 }; + static const u16 S9[512] = { + 167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397, + 183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177, + 175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400, + 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76, + 165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223, + 501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163, + 232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135, + 344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27, + 487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124, + 475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364, + 363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229, + 439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277, + 465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282, + 173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330, + 280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454, + 132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374, + 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285, + 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32, + 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355, + 185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190, + 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111, + 336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18, + 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84, + 414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201, + 266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133, + 311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404, + 485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127, + 312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398, + 284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451, + 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402, + 438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380, + 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461}; + + /* The sixteen bit input is split into two unequal halves, * + * nine bits and seven bits - as is the subkey */ + + nine = (u16)(in>>7)&0x1FF; + seven = (u16)(in&0x7F); + + /* Now run the various operations */ + nine = (u16)(S9[nine] ^ seven); + seven = (u16)(S7[seven] ^ (nine & 0x7F)); + seven ^= (subkey>>9); + nine ^= (subkey&0x1FF); + nine = (u16)(S9[nine] ^ seven); + seven = (u16)(S7[seven] ^ (nine & 0x7F)); + return (u16)(seven<<9) + nine; +} + +static ulong32 FO( ulong32 in, int round_no, symmetric_key *key) +{ + u16 left, right; + + /* Split the input into two 16-bit words */ + left = (u16)(in>>16); + right = (u16) in&0xFFFF; + + /* Now apply the same basic transformation three times */ + left ^= key->kasumi.KOi1[round_no]; + left = FI( left, key->kasumi.KIi1[round_no] ); + left ^= right; + + right ^= key->kasumi.KOi2[round_no]; + right = FI( right, key->kasumi.KIi2[round_no] ); + right ^= left; + + left ^= key->kasumi.KOi3[round_no]; + left = FI( left, key->kasumi.KIi3[round_no] ); + left ^= right; + + return (((ulong32)right)<<16)+left; +} + +static ulong32 FL( ulong32 in, int round_no, symmetric_key *key ) +{ + u16 l, r, a, b; + /* split out the left and right halves */ + l = (u16)(in>>16); + r = (u16)(in)&0xFFFF; + /* do the FL() operations */ + a = (u16) (l & key->kasumi.KLi1[round_no]); + r ^= ROL16(a,1); + b = (u16)(r | key->kasumi.KLi2[round_no]); + l ^= ROL16(b,1); + /* put the two halves back together */ + + return (((ulong32)l)<<16) + r; +} + +int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +{ + ulong32 left, right, temp; + int n; + + LTC_ARGCHK(pt != NULL); + LTC_ARGCHK(ct != NULL); + LTC_ARGCHK(skey != NULL); + + LOAD32H(left, pt); + LOAD32H(right, pt+4); + + for (n = 0; n <= 7; ) { + temp = FL(left, n, skey); + temp = FO(temp, n++, skey); + right ^= temp; + temp = FO(right, n, skey); + temp = FL(temp, n++, skey); + left ^= temp; + } + + STORE32H(left, ct); + STORE32H(right, ct+4); + + return CRYPT_OK; +} + +int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +{ + ulong32 left, right, temp; + int n; + + LTC_ARGCHK(pt != NULL); + LTC_ARGCHK(ct != NULL); + LTC_ARGCHK(skey != NULL); + + LOAD32H(left, ct); + LOAD32H(right, ct+4); + + for (n = 7; n >= 0; ) { + temp = FO(right, n, skey); + temp = FL(temp, n--, skey); + left ^= temp; + temp = FL(left, n, skey); + temp = FO(temp, n--, skey); + right ^= temp; + } + + STORE32H(left, pt); + STORE32H(right, pt+4); + + return CRYPT_OK; +} + +int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) +{ + static const u16 C[8] = { 0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 }; + u16 ukey[8], Kprime[8]; + int n; + + LTC_ARGCHK(key != NULL); + LTC_ARGCHK(skey != NULL); + + if (keylen != 16) { + return CRYPT_INVALID_KEYSIZE; + } + + if (num_rounds != 0 && num_rounds != 8) { + return CRYPT_INVALID_ROUNDS; + } + + /* Start by ensuring the subkeys are endian correct on a 16-bit basis */ + for (n = 0; n < 8; n++ ) { + ukey[n] = (((u16)key[2*n]) << 8) | key[2*n+1]; + } + + /* Now build the K'[] keys */ + for (n = 0; n < 8; n++) { + Kprime[n] = ukey[n] ^ C[n]; + } + + /* Finally construct the various sub keys */ + for(n = 0; n < 8; n++) { + skey->kasumi.KLi1[n] = ROL16(ukey[n],1); + skey->kasumi.KLi2[n] = Kprime[(n+2)&0x7]; + skey->kasumi.KOi1[n] = ROL16(ukey[(n+1)&0x7],5); + skey->kasumi.KOi2[n] = ROL16(ukey[(n+5)&0x7],8); + skey->kasumi.KOi3[n] = ROL16(ukey[(n+6)&0x7],13); + skey->kasumi.KIi1[n] = Kprime[(n+4)&0x7]; + skey->kasumi.KIi2[n] = Kprime[(n+3)&0x7]; + skey->kasumi.KIi3[n] = Kprime[(n+7)&0x7]; + } + + return CRYPT_OK; +} + +void kasumi_done(symmetric_key *skey) +{ +} + +int kasumi_keysize(int *keysize) +{ + LTC_ARGCHK(keysize != NULL); + if (*keysize >= 16) { + *keysize = 16; + return CRYPT_OK; + } else { + return CRYPT_INVALID_KEYSIZE; + } +} + +int kasumi_test(void) +{ +#ifndef LTC_TEST + return CRYPT_NOP; +#else + static const struct { + unsigned char key[16], pt[8], ct[8]; + } tests[] = { + +{ + { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0x4B, 0x58, 0xA7, 0x71, 0xAF, 0xC7, 0xE5, 0xE8 } +}, + +{ + { 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0x7E, 0xEF, 0x11, 0x3C, 0x95, 0xBB, 0x5A, 0x77 } +}, + +{ + { 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0x5F, 0x14, 0x06, 0x86, 0xD7, 0xAD, 0x5A, 0x39 }, +}, + +{ + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }, + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0x2E, 0x14, 0x91, 0xCF, 0x70, 0xAA, 0x46, 0x5D } +}, + +{ + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00 }, + { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, + { 0xB5, 0x45, 0x86, 0xF4, 0xAB, 0x9A, 0xE5, 0x46 } +}, + +}; + unsigned char buf[2][8]; + symmetric_key key; + int err, x; + + for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { + if ((err = kasumi_setup(tests[x].key, 16, 0, &key)) != CRYPT_OK) { + return err; + } + if ((err = kasumi_ecb_encrypt(tests[x].pt, buf[0], &key)) != CRYPT_OK) { + return err; + } + if ((err = kasumi_ecb_decrypt(tests[x].ct, buf[1], &key)) != CRYPT_OK) { + return err; + } + if (XMEMCMP(tests[x].pt, buf[1], 8) || XMEMCMP(tests[x].ct, buf[0], 8)) { + return CRYPT_FAIL_TESTVECTOR; + } + } + return CRYPT_OK; +#endif +} + +#endif + +/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/kasumi.c,v $ */ +/* $Revision: 1.7 $ */ +/* $Date: 2006/11/09 03:05:44 $ */