Mercurial > dropbear
diff aes.c @ 0:d7da3b1e1540 libtomcrypt
put back the 0.95 makefile which was inadvertently merged over
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:21:40 +0000 |
parents | |
children | 6362d3854bb4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/aes.c Mon May 31 18:21:40 2004 +0000 @@ -0,0 +1,606 @@ +/* LibTomCrypt, modular cryptographic library -- Tom St Denis + * + * LibTomCrypt is a library that provides various cryptographic + * algorithms in a highly modular and flexible manner. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://libtomcrypt.org + */ + +/* AES implementation by Tom St Denis + * + * Derived from the Public Domain source code by + +--- + * rijndael-alg-fst.c + * + * @version 3.0 (December 2000) + * + * Optimised ANSI C code for the Rijndael cipher (now AES) + * + * @author Vincent Rijmen <[email protected]> + * @author Antoon Bosselaers <[email protected]> + * @author Paulo Barreto <[email protected]> +--- + */ + +#include "mycrypt.h" + +#ifdef RIJNDAEL + +const struct _cipher_descriptor rijndael_desc = +{ + "rijndael", + 6, + 16, 32, 16, 10, + &rijndael_setup, + &rijndael_ecb_encrypt, + &rijndael_ecb_decrypt, + &rijndael_test, + &rijndael_keysize +}; + +const struct _cipher_descriptor aes_desc = +{ + "aes", + 6, + 16, 32, 16, 10, + &rijndael_setup, + &rijndael_ecb_encrypt, + &rijndael_ecb_decrypt, + &rijndael_test, + &rijndael_keysize +}; + +#include "aes_tab.c" + +int rijndael_setup(const unsigned char *key, int keylen, int rounds, symmetric_key *skey) +{ + int i, j; + ulong32 temp, *rk, *rrk; + + _ARGCHK(key != NULL); + _ARGCHK(skey != NULL); + + if (keylen != 16 && keylen != 24 && keylen != 32) { + return CRYPT_INVALID_KEYSIZE; + } + + if (rounds != 0 && rounds != (10 + ((keylen/8)-2)*2)) { + return CRYPT_INVALID_ROUNDS; + } + + skey->rijndael.Nr = 10 + ((keylen/8)-2)*2; + + /* setup the forward key */ + i = 0; + rk = skey->rijndael.eK; + LOAD32H(rk[0], key ); + LOAD32H(rk[1], key + 4); + LOAD32H(rk[2], key + 8); + LOAD32H(rk[3], key + 12); + if (keylen == 16) { + j = 44; + for (;;) { + temp = rk[3]; + rk[4] = rk[0] ^ + (Te4_3[byte(temp, 2)]) ^ + (Te4_2[byte(temp, 1)]) ^ + (Te4_1[byte(temp, 0)]) ^ + (Te4_0[byte(temp, 3)]) ^ + rcon[i]; + rk[5] = rk[1] ^ rk[4]; + rk[6] = rk[2] ^ rk[5]; + rk[7] = rk[3] ^ rk[6]; + if (++i == 10) { + break; + } + rk += 4; + } + } else if (keylen == 24) { + j = 52; + LOAD32H(rk[4], key + 16); + LOAD32H(rk[5], key + 20); + for (;;) { + #ifdef _MSC_VER + temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5]; + #else + temp = rk[5]; + #endif + rk[ 6] = rk[ 0] ^ + (Te4_3[byte(temp, 2)]) ^ + (Te4_2[byte(temp, 1)]) ^ + (Te4_1[byte(temp, 0)]) ^ + (Te4_0[byte(temp, 3)]) ^ + rcon[i]; + rk[ 7] = rk[ 1] ^ rk[ 6]; + rk[ 8] = rk[ 2] ^ rk[ 7]; + rk[ 9] = rk[ 3] ^ rk[ 8]; + if (++i == 8) { + break; + } + rk[10] = rk[ 4] ^ rk[ 9]; + rk[11] = rk[ 5] ^ rk[10]; + rk += 6; + } + } else if (keylen == 32) { + j = 60; + LOAD32H(rk[4], key + 16); + LOAD32H(rk[5], key + 20); + LOAD32H(rk[6], key + 24); + LOAD32H(rk[7], key + 28); + for (;;) { + #ifdef _MSC_VER + temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7]; + #else + temp = rk[7]; + #endif + rk[ 8] = rk[ 0] ^ + (Te4_3[byte(temp, 2)]) ^ + (Te4_2[byte(temp, 1)]) ^ + (Te4_1[byte(temp, 0)]) ^ + (Te4_0[byte(temp, 3)]) ^ + rcon[i]; + rk[ 9] = rk[ 1] ^ rk[ 8]; + rk[10] = rk[ 2] ^ rk[ 9]; + rk[11] = rk[ 3] ^ rk[10]; + if (++i == 7) { + break; + } + temp = rk[11]; + rk[12] = rk[ 4] ^ + (Te4_3[byte(temp, 3)]) ^ + (Te4_2[byte(temp, 2)]) ^ + (Te4_1[byte(temp, 1)]) ^ + (Te4_0[byte(temp, 0)]); + rk[13] = rk[ 5] ^ rk[12]; + rk[14] = rk[ 6] ^ rk[13]; + rk[15] = rk[ 7] ^ rk[14]; + rk += 8; + } + } else { + /* this can't happen */ + j = 4; + } + + /* setup the inverse key now */ + rk = skey->rijndael.dK; + rrk = skey->rijndael.eK + j - 4; + + /* apply the inverse MixColumn transform to all round keys but the first and the last: */ + /* copy first */ + *rk++ = *rrk++; + *rk++ = *rrk++; + *rk++ = *rrk++; + *rk = *rrk; + rk -= 3; rrk -= 3; + + for (i = 1; i < skey->rijndael.Nr; i++) { + rrk -= 4; + rk += 4; + #ifdef SMALL_CODE + temp = rrk[0]; + rk[0] = + Td0(255 & Te4[byte(temp, 3)]) ^ + Td1(255 & Te4[byte(temp, 2)]) ^ + Td2(255 & Te4[byte(temp, 1)]) ^ + Td3(255 & Te4[byte(temp, 0)]); + temp = rrk[1]; + rk[1] = + Td0(255 & Te4[byte(temp, 3)]) ^ + Td1(255 & Te4[byte(temp, 2)]) ^ + Td2(255 & Te4[byte(temp, 1)]) ^ + Td3(255 & Te4[byte(temp, 0)]); + temp = rrk[2]; + rk[2] = + Td0(255 & Te4[byte(temp, 3)]) ^ + Td1(255 & Te4[byte(temp, 2)]) ^ + Td2(255 & Te4[byte(temp, 1)]) ^ + Td3(255 & Te4[byte(temp, 0)]); + temp = rrk[3]; + rk[3] = + Td0(255 & Te4[byte(temp, 3)]) ^ + Td1(255 & Te4[byte(temp, 2)]) ^ + Td2(255 & Te4[byte(temp, 1)]) ^ + Td3(255 & Te4[byte(temp, 0)]); + #else + temp = rrk[0]; + rk[0] = + Tks0[byte(temp, 3)] ^ + Tks1[byte(temp, 2)] ^ + Tks2[byte(temp, 1)] ^ + Tks3[byte(temp, 0)]; + temp = rrk[1]; + rk[1] = + Tks0[byte(temp, 3)] ^ + Tks1[byte(temp, 2)] ^ + Tks2[byte(temp, 1)] ^ + Tks3[byte(temp, 0)]; + temp = rrk[2]; + rk[2] = + Tks0[byte(temp, 3)] ^ + Tks1[byte(temp, 2)] ^ + Tks2[byte(temp, 1)] ^ + Tks3[byte(temp, 0)]; + temp = rrk[3]; + rk[3] = + Tks0[byte(temp, 3)] ^ + Tks1[byte(temp, 2)] ^ + Tks2[byte(temp, 1)] ^ + Tks3[byte(temp, 0)]; + #endif + + } + + /* copy last */ + rrk -= 4; + rk += 4; + *rk++ = *rrk++; + *rk++ = *rrk++; + *rk++ = *rrk++; + *rk = *rrk; + + return CRYPT_OK; +} + +#ifdef CLEAN_STACK +static void _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +#else +void rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +#endif +{ + ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk; + int Nr, r; + + _ARGCHK(pt != NULL); + _ARGCHK(ct != NULL); + _ARGCHK(skey != NULL); + + Nr = skey->rijndael.Nr; + rk = skey->rijndael.eK; + + /* + * map byte array block to cipher state + * and add initial round key: + */ + LOAD32H(s0, pt ); s0 ^= rk[0]; + LOAD32H(s1, pt + 4); s1 ^= rk[1]; + LOAD32H(s2, pt + 8); s2 ^= rk[2]; + LOAD32H(s3, pt + 12); s3 ^= rk[3]; + + /* + * Nr - 1 full rounds: + */ + r = Nr >> 1; + for (;;) { + t0 = + Te0(byte(s0, 3)) ^ + Te1(byte(s1, 2)) ^ + Te2(byte(s2, 1)) ^ + Te3(byte(s3, 0)) ^ + rk[4]; + t1 = + Te0(byte(s1, 3)) ^ + Te1(byte(s2, 2)) ^ + Te2(byte(s3, 1)) ^ + Te3(byte(s0, 0)) ^ + rk[5]; + t2 = + Te0(byte(s2, 3)) ^ + Te1(byte(s3, 2)) ^ + Te2(byte(s0, 1)) ^ + Te3(byte(s1, 0)) ^ + rk[6]; + t3 = + Te0(byte(s3, 3)) ^ + Te1(byte(s0, 2)) ^ + Te2(byte(s1, 1)) ^ + Te3(byte(s2, 0)) ^ + rk[7]; + + rk += 8; + if (--r == 0) { + break; + } + + s0 = + Te0(byte(t0, 3)) ^ + Te1(byte(t1, 2)) ^ + Te2(byte(t2, 1)) ^ + Te3(byte(t3, 0)) ^ + rk[0]; + s1 = + Te0(byte(t1, 3)) ^ + Te1(byte(t2, 2)) ^ + Te2(byte(t3, 1)) ^ + Te3(byte(t0, 0)) ^ + rk[1]; + s2 = + Te0(byte(t2, 3)) ^ + Te1(byte(t3, 2)) ^ + Te2(byte(t0, 1)) ^ + Te3(byte(t1, 0)) ^ + rk[2]; + s3 = + Te0(byte(t3, 3)) ^ + Te1(byte(t0, 2)) ^ + Te2(byte(t1, 1)) ^ + Te3(byte(t2, 0)) ^ + rk[3]; + } + /* + * apply last round and + * map cipher state to byte array block: + */ + s0 = + (Te4_3[(t0 >> 24) ]) ^ + (Te4_2[(t1 >> 16) & 0xff]) ^ + (Te4_1[(t2 >> 8) & 0xff]) ^ + (Te4_0[(t3 ) & 0xff]) ^ + rk[0]; + STORE32H(s0, ct); + s1 = + (Te4_3[(t1 >> 24) ]) ^ + (Te4_2[(t2 >> 16) & 0xff]) ^ + (Te4_1[(t3 >> 8) & 0xff]) ^ + (Te4_0[(t0 ) & 0xff]) ^ + rk[1]; + STORE32H(s1, ct+4); + s2 = + (Te4_3[(t2 >> 24) ]) ^ + (Te4_2[(t3 >> 16) & 0xff]) ^ + (Te4_1[(t0 >> 8) & 0xff]) ^ + (Te4_0[(t1 ) & 0xff]) ^ + rk[2]; + STORE32H(s2, ct+8); + s3 = + (Te4_3[(t3 >> 24) ]) ^ + (Te4_2[(t0 >> 16) & 0xff]) ^ + (Te4_1[(t1 >> 8) & 0xff]) ^ + (Te4_0[(t2 ) & 0xff]) ^ + rk[3]; + STORE32H(s3, ct+12); +} + +#ifdef CLEAN_STACK +void rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +{ + _rijndael_ecb_encrypt(pt, ct, skey); + burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2); +} +#endif + +#ifdef CLEAN_STACK +static void _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +#else +void rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +#endif +{ + ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk; + int Nr, r; + + _ARGCHK(pt != NULL); + _ARGCHK(ct != NULL); + _ARGCHK(skey != NULL); + + Nr = skey->rijndael.Nr; + rk = skey->rijndael.dK; + + /* + * map byte array block to cipher state + * and add initial round key: + */ + LOAD32H(s0, ct ); s0 ^= rk[0]; + LOAD32H(s1, ct + 4); s1 ^= rk[1]; + LOAD32H(s2, ct + 8); s2 ^= rk[2]; + LOAD32H(s3, ct + 12); s3 ^= rk[3]; + + /* + * Nr - 1 full rounds: + */ + r = Nr >> 1; + for (;;) { + + t0 = + Td0(byte(s0, 3)) ^ + Td1(byte(s3, 2)) ^ + Td2(byte(s2, 1)) ^ + Td3(byte(s1, 0)) ^ + rk[4]; + t1 = + Td0(byte(s1, 3)) ^ + Td1(byte(s0, 2)) ^ + Td2(byte(s3, 1)) ^ + Td3(byte(s2, 0)) ^ + rk[5]; + t2 = + Td0(byte(s2, 3)) ^ + Td1(byte(s1, 2)) ^ + Td2(byte(s0, 1)) ^ + Td3(byte(s3, 0)) ^ + rk[6]; + t3 = + Td0(byte(s3, 3)) ^ + Td1(byte(s2, 2)) ^ + Td2(byte(s1, 1)) ^ + Td3(byte(s0, 0)) ^ + rk[7]; + + rk += 8; + if (--r == 0) { + break; + } + + + s0 = + Td0(byte(t0, 3)) ^ + Td1(byte(t3, 2)) ^ + Td2(byte(t2, 1)) ^ + Td3(byte(t1, 0)) ^ + rk[0]; + s1 = + Td0(byte(t1, 3)) ^ + Td1(byte(t0, 2)) ^ + Td2(byte(t3, 1)) ^ + Td3(byte(t2, 0)) ^ + rk[1]; + s2 = + Td0(byte(t2, 3)) ^ + Td1(byte(t1, 2)) ^ + Td2(byte(t0, 1)) ^ + Td3(byte(t3, 0)) ^ + rk[2]; + s3 = + Td0(byte(t3, 3)) ^ + Td1(byte(t2, 2)) ^ + Td2(byte(t1, 1)) ^ + Td3(byte(t0, 0)) ^ + rk[3]; + } + + /* + * apply last round and + * map cipher state to byte array block: + */ + s0 = + (Td4[(t0 >> 24) ] & 0xff000000) ^ + (Td4[(t3 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t2 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[(t1 ) & 0xff] & 0x000000ff) ^ + rk[0]; + STORE32H(s0, pt); + s1 = + (Td4[(t1 >> 24) ] & 0xff000000) ^ + (Td4[(t0 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t3 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[(t2 ) & 0xff] & 0x000000ff) ^ + rk[1]; + STORE32H(s1, pt+4); + s2 = + (Td4[(t2 >> 24) ] & 0xff000000) ^ + (Td4[(t1 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t0 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[(t3 ) & 0xff] & 0x000000ff) ^ + rk[2]; + STORE32H(s2, pt+8); + s3 = + (Td4[(t3 >> 24) ] & 0xff000000) ^ + (Td4[(t2 >> 16) & 0xff] & 0x00ff0000) ^ + (Td4[(t1 >> 8) & 0xff] & 0x0000ff00) ^ + (Td4[(t0 ) & 0xff] & 0x000000ff) ^ + rk[3]; + STORE32H(s3, pt+12); +} + + +#ifdef CLEAN_STACK +void rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +{ + _rijndael_ecb_decrypt(ct, pt, skey); + burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2); +} +#endif + +int rijndael_test(void) +{ + #ifndef LTC_TEST + return CRYPT_NOP; + #else + int err; + static const struct { + int keylen; + unsigned char key[32], pt[16], ct[16]; + } tests[] = { + { 16, + { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, + { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, + { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, + 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a } + }, { + 24, + { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 }, + { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, + { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0, + 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 } + }, { + 32, + { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }, + { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, + { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf, + 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 } + } + }; + + symmetric_key key; + unsigned char tmp[2][16]; + int i, y; + + for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { + zeromem(&key, sizeof(key)); + if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { + return err; + } + + rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key); + rijndael_ecb_decrypt(tmp[0], tmp[1], &key); + if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) { +#if 0 + printf("\n\nTest %d failed\n", i); + if (memcmp(tmp[0], tests[i].ct, 16)) { + printf("CT: "); + for (i = 0; i < 16; i++) { + printf("%02x ", tmp[0][i]); + } + printf("\n"); + } else { + printf("PT: "); + for (i = 0; i < 16; i++) { + printf("%02x ", tmp[1][i]); + } + printf("\n"); + } +#endif + return CRYPT_FAIL_TESTVECTOR; + } + + /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ + for (y = 0; y < 16; y++) tmp[0][y] = 0; + for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key); + for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key); + for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; + } + return CRYPT_OK; + #endif +} + +int rijndael_keysize(int *desired_keysize) +{ + _ARGCHK(desired_keysize != NULL); + + if (*desired_keysize < 16) + return CRYPT_INVALID_KEYSIZE; + if (*desired_keysize < 24) { + *desired_keysize = 16; + return CRYPT_OK; + } else if (*desired_keysize < 32) { + *desired_keysize = 24; + return CRYPT_OK; + } else { + *desired_keysize = 32; + return CRYPT_OK; + } +} + +#endif +